Hzsecta AH AsepOaiimxana

191

UDC 51-72:531

MUHARRAMOY M.A.

DIRECT AND INVERSE PROBLEMS OF PIPELINE
CATHODIC PROTECTION

1. Mathematical Model Based on
Ordinary Differential Equations

Let a segment of an underground
metal pipeline be represented by means
of an infinite, semifinite or finite
interval of the real line R':

a<r<h —wZg<h<+m
wherein xr denotcs a lincar co-ordinate
on the pipeline. Equality of cither a or A
to infinity means that for all practical
purposes the pipeline sepment can be
assumed infinite in the corresponding
direction. In order to derive an cquation
governing the distribution of potential
on a pipeline, we consider in this
paragraph a model of pipeline cathodic
protection that is based on an equivalent
eircuit presented in [1]. Linear resistanse
means the resistance of a unit length
scgment of pipe as measured between its
extremities  (i.e., junctions to the
adjacent segments) and lateral resistance
means the resistance to the remote earth
of such a segment of buned pipe
detached from the rest of the pipeline'.
Every peace of pipe metal possesses a
natural potential, which varies along the
pipeline thus causing local micro-
currents * .

Inasmuch as eclectric currents
can be linearly superimposed, we can
scgregate  micro-currents  caused by
natural potential wvarations from the
currents caused by extemal sources,

! Not the same as «coating resistance» even
though lagely determined by it

* and corroding sites of relatively positive
natural potential

studying the latter by means of an
ordinary  differential equation and
relying on field test measurements of
natural potentials for the former. If
p2,(x), p,(¥) now denote the linear and
lateral spceific resistivities of the pipe -
i1.e, linear and lateral resistivitiesof a
unit length pipe segment at a point x -
we can write the following differential
equation governing the local behaviour
of potential shifis on the pipeline:

d cf}_p.fx}dqﬁ__ p,{xlqﬁ{x}:ﬂ 0
de” py(x)dx p(x)
wherein 5(x) is the potential shift at a
point x. In a particular case when the
linear specific resisivity 15 homogenous
throughout the pipeline —1.e., constant-
the second term will vanish:

@——'ﬂ' x)=0 2
7o p!{.x}?’{} (2)
Further assuming constancy of the
lateral specific  resistvity  (that  is
homogeneity of both the coating
conductivity and soil conditions) we
reduce the equation to the following
simplified from, which is widely used in
industry:

d'¢p p
e -—;fP(IFﬂ' (3)
This ecquation allows for a simple
analytical solution: ¢b(x) = exp{zax}

where a=,/p,/p, is referred to as
wattenuation constanty

To make Equations (1)-(3)
usable, we must complement them with
the following conditions on g

(% +) — @'(x.-)
fi‘":ru}:ug- ¢ o } d" -
£, (x)
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[ gy, 4)

& P‘l (X}
where x, is the co-ordinate of the drain
point (a <x, <b),U, is the potential
shift at the drain point,  is the total
current flowing through the pipeline and
@'(x,+), ¢'(x,~) are the right and left-
hand derivatives of ¢(x) at the drain

point” .

The integral in the second condition
equals the total current flowing through
the pipeline, and

@'(x,+)/ py (%) @' (%) oy (%)

are the currents flowing to the right and
left of the drain point.

We have effectively reduced our
task to solving two Cauchy problems for
the ordinary differential equation (1) on
the intervals (a,[7,) and (U,.b)subject
to Condition (4). In case the drain point
is at one of the segment’s extremitics,
we will get:

qb{a):(fn,ti:'[a}fpl{a}:.f (5)
for the left-hand drain point, and
GbY=U,.d'(b) p,(B)=1 (6)

otherwise, Combining (5) or (6) with (3)
we obtain a simplified model of
potential distribution currently utilised
in the pipeline and power transmission
industries  (e.g., Aramco Design
Practice).Problem (2,4) can be used for
restoration of inhomogeneous coating
conductivity on the basis of test
measurements —i.e., solving the inverse
problem of cathodic protection. For this
purpose we assume that the function
p,(x)is partially constant —i.e., takes
discrete wvalues on sub-intervals that
form a partition of the interval (a,b):

*Note that the function gh(x)is not diffe-
rentighle at the drain point unless the latter is
at one of the segment's extremities - the
abso-lnte value of the potential shift has a
«peak» at the drain point, sloping down in
both directions

a=£, < <&, <.<fy <oy =h
ﬁi(x}zsrs!fém <x<§,

i=12,. N (M
This condition means that coating
quality is the same throughout any pipe
segment (£.,,£,)i=12,.,N, but may
differ among different segments (e.g.
«news« and «old» pipe). Solution of the
problem (2,4,7) therefore comes down
to solving a series of problems (3,5) (to
the right of the drain point) and (3, &) {to
the lefi thereof ) with the following
reconciliation conditions:

qaité;;_"]:'ﬁ'(‘gr*"}:g; ;txu:ffﬁ{'gr_}: (8}
=& +)i=12, N,

Assuming that &, , <x, <&, 1€j<N
and (&), PE,)....PE ). Plx,). ] are

known,we can usc the following
algorithm for caleulating the specific
resistivities S,,i=L2....N:
1. Solve the following systems of non-
lingar eguations with respect to two
vnknowns @'(x,+) and S, :

[‘f"(g,u) dix,) mh(vi‘i‘f _"-u}j

\
+¢'(x, +]‘|5nﬂ1{\/ €, -~ 'j} {9

] "-i-"(g_lr-l) = qplx, )COSh[J%{ID = gj—i }] +

4

+(pd - '(x, +])s=nhu— (x, - 61_,}}
..f

2.Calculate

‘i} (g_f} @{IQ]Jr smh[\ Py {(E "'tnﬂ"'
A

+ip'(x, +)J§ mh{g[ﬁj -x, )],
1 J
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3. For each i=j+L : '-_-... the
fo“OWingp oce 3 . ..
Solve the folle on with

respectto S, :

B(E) = DS, ) cosd I8

+¢'t¢,-l)sine{ 2

Calculate: 4

P =D&,

+ q()'(i—j }Jj;‘: 3

4. For each #=
following proces
Solve the fo
respect to S,

P(&.)=

Calculate:
$(E.) ==

_‘fH}]
_‘fa—l) ]

System (9)
Newton's
requires

[Problems of pipeline protection]

approximations of ¢'(x,+) and §,. In
the event the lateral specific resistivity is
homogencous throughout the pipeline,
the above algorithm can determine the
value of the lateral resistivity on the
basis of test measurement at three
points: two test points at the extremities
of the pipeline segment under
consideration and a drain point in
between them. In such a case, the
algonthm will terminate after Step l-ie.,
after the calculation of the lateral
specific resistivity S on the segment
(£..6.)=

~(ab).

Furthermore, if the lateral
specific resistivity 15 constant
throughout the pipeline, 1ts value can be
restored from a single drain-point
measurement  using  Ohm:s law. To
accomplish this, we nedd to find out
how  pipeling  resistance  can  be
expressed wvia its length and lateral
resistivity.

Assume that x 1s the length of a
buried pipe,0 corresponds to the pipe’s
left end and R(x) denotes the resistance
between the peint 0 and the remote
carth. The resistance as a function of the
length satisfies the following nen-linear
ordinary differential equation:

di(x)  R'(x)

- o) +p(x) (10)
with the following  initial-value
(Cauchy) condition;

R(0) = +00 (11}

Note that Equation (10} allows for
variable linear and lateral specific
resistivitics,

If the pipe’s left end is attached
to a metal structure that has a finite
resistance R, to earth (e.g, terminal
piping connected to a terminal earthing
system), the condition (11} should be
replaced with the following one:
R(0)=R, (12)
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We can now calculate the resistance of
pipe-to-earth system between a point
x,on a pipeline of length [ and the
remote  earth in case of contant
resistivities:

Rf-ndm' =] Jf R_l(R $xﬂ}+
+RYR,, - X))

wherein R, and R, are «terminal»

(13}

resistances of the pipeline and R{a,x)
denotes the solution to (10} with
p,(x)=p, =const, p,(x)=m p, =const,

satisfying  the  initial  condition
R(0y=a-ie,.
Jo e, + P

a
xtanh(xy/, 7, )
/ é«.ﬁp. T +—x

Ria,x) =+ 25 (14)

«tash(c/7, 7 7, )
if a#x

\Jpi7 o, Jtanhle 2.7,

if a=w

Now if the current thruogh the pipeline
and the potential shift at the drain point
(hence R, ,)are known, we can resolve
Equation (13) with respect to o, and so
obtain the wvalue of (homogeneous)
lateral resistivity., Albeit this approach
depends on the constancy of the lateral
resistivity, it can be used for obtaining
initial approximations of §, and
¢'(x,+) in System ();

S_,- =P, qb'(:r:a+) =

) (15)

R(R, 0l — %,)

where p,is found from Equation (13)

with R, =— -note that (x,)

x,)
is the potential at the drain point
measured with respect to the remote
earth less the natural potential.

This  technique of  back-
calculating {in-) homogencous lateral
resistivity has been implemented i CP
DESIGN cathodic protection design
software (see [2]). Inasmuch as the
coating  specific  resistivity is  the
deciding factor in the magnitude of the
latcral resistivity, the latter can be
utilised to estimate the wvalue of the
former, soil conditions being neglected.
The coating resistivity can be obtained
fromi the lateral specific resistivity as
follows:

P oo (X) =7D(x) 0, (¥) (16)
wherein D(x) is the outer pipeline
diameter at a point x. The linear specific
resistivity is likewise expressed through
pipe metal (steel) resistivity and pipc
dimensions:

P i (%) = p (KU (x)7D (x) =
~Wxh

W is the wall thickness.

(17)

-Mathematical Model Based on
Differential  Equations  with
Partial Derivatives

[ 5]
H

In this paragraph, we will spell out
the equations governing  potential
distibution m the ground as well as
throughout the pipeline, and get od of
the previous assumption that potentials
have to be measured with respect to a
remote carth. A finite segment of buried
pipeline can be represented as a eylinder
in the three-dimensional Euclidean
Space:

P=[-ag+alx{{y,z}; y* +2* 2r*} (18)
wherein r is the pipeline radius, and the
scgment length cquals 2a. If we denote
potential in the ground through « and the
pipeline potential change via . the
svstem goverinig »# and  can be
writicn as follows:

divio(x, v, z2)¥ul(x, y,z20) =0,

u € W, ((—oo,+e0) x {—o0,400) x (19}
x (=0, i\ P), h>0
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[ffm]
a’:’q;r(x,ql{_},Jr dax ) dy(x.@)
dx’ px) .  (20)
£,(x)

o T =0

Pt(x)w{x,q'r)

—g<x<a, 0=¢h<2n,

weW,([~a.a]x[0.27)
coupled with the following conditions:
W[U: ‘153 + W.“, (D1¢} e H(xnsya sza] o Uu ]

dy(0-) _dy(Ond) _ o
- = p O,

Ou
=0, uf{m)=0, (21)
a!lf.l:.;\-}.?..‘i‘J FL ]
}-{w{x,@} (0 ) — X, 3, 2)) o
& P (x)
e {Vulx, v, z)«dS; - 22)
» £2;(x)

In these cquations, z = A represents the
ground surface, (x,¢h)are co —ordinates
on the cylinder P(ie, pipelineg),
o(x,y,2}is soil resistivity, U, is the
drain point potential change, w(x, )
and y_ (x,gb)are the pipeline potential
change  and  natural  potential,
respectively. The other variables and
functions are either self-explanatory or
have been described in the Paragraph [
The drain point in the above equations is
assumed to be at the point
x=0,3=0,z=0, but any other drain
point can be written similar equations
for. [Incidentally, the drain point
potential change is shown as specified
with respect to a point (x,,¥,,2z,) in the
ground rather than a «emote earths,
The notation W, denotes Sobolev Space
of functions that have the frist order
partial derivatives in L,.

The system (19)-(22) lends itself
to a numerical solution, allows for
complicated soil conditions and test

[Problems of pipeline protection)

measurements between the pipeline and any
points in the ground.
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NOQLIYYAT BORULARI KATOD
MITIAFiZB5ININ DUZ VO TORS
MosoLoLoRl

lsda, adi va xiisusi taromoli
diferensial tanliklardan istifads  etmmokla
magistral horu komarlorinin katod miidafia
sisterni Ggin  iki rivazi  medel  toklif
edilmisdir, Boru kaman  paramctrlarinin,
potensialin  dlgilmosi naticoloring  asasan,
tapilmast kimi tars mosalanin hall dsulu va
uygun algoritm verilmisdir. Bu igdaki
metod  milallif tarafindon  islonnug  va
sanayeda Gz lathigini taprug  program
taminatinin asasio tagkil edir.



