
AZERBAIJAN REPUBLIC MINISTRY OF EDUCATION

Baku State University
Faculty of Applied Mathematics and Cybernetics

Department of Applied Mathematics

Musa A. Maharramov, Ph.D.
email: musa 'AT' maharramov.com

MATHEMATICAL MODELLING OF A STEADY-STATE
FLOW OF A VISCOUS LIQUID IN A PIPELINE

A mathematical model and software for performing
PC-based pipeline hydraulics simulations.

Baku 2003

Page 1 of 44

Table of Contents
Table of Contents .. 2
Introduction .. 3
Chapter I. Mechanics of Flow in Hydrocarbon Pipelines 4

1. Governing Equations ... 4
2. Viscous Liquid .. 7

Chapter II. Mathematical Model of a Steady-state Flow through a Steel
Pipeline .. 10

3. Pipeline .. 10
4. Model ... 12

Chapter III. Flow Simulation .. 16
5. Interfaces and Output ... 16
6. Location of PS and PRS ... 16

Appendix A. Source Code of the Data Module ... 23
Appendix B. Source Code of the Computations Module 29
References .. 44

Page 2 of 44

Introduction

In this work, a mathematical model is presented of a steady-state flow of a viscous liquid-
phase hydrocarbon in a steel pipeline. The model has been used in developing computer
software and successfully tested in industrial environment.

Chapter I presents the mathematical foundation of the theory developed in the subsequent
parts of the work and contains all the principal governing equations.

Chapter II formally introduces the model and adapts the governing equations to its specifics.

Chapter III describes computer software that implements the proposed model.

Appendices A and B contain detailed source code of the application.

Page 3 of 44

Chapter I. Mechanics of Flow in Hydrocarbon
Pipelines

This Chapter presents governing equations used in subsequent parts of the work for
developing mathematical model of a steady-state flow. The principal objective of this work
being the development of computer software for simulating flow of liquid hydrocarbons
through steel pipelines, material presented in this Chapter primarily concerns the flow of a
viscous incompressible liquid. However, some of the developed apparatus applies to other
media as well – e.g., compressible viscous hydrocarbon gas.

1. Governing Equations

Let us consider the flow of a continuous medium (continuum) in the 3-dimensional Euclidean
space. It is assumed that the initial position of all particles of the medium is known and the
process is described by specifying a velocity field () 3,2,1,,,, 321 == itxxxvv ii where

()321 ,, vvv=v is the velocity of the particle that has Euler coordinates 321 ,, xxx at the
moment of time t (i.e., the particle occupying the geometrical point with coordinates

321 ,, xxx at the moment t.) It is further assumed that the continuum is characterised by a

spatial density ()txxx ,,, 321ρρ = and internal energy ()txxxUU ,,, 321= . The last

quantity is characteristic of the total energy of molecules in a unit mass of the medium –
i.e., the internal energy is the sum of the total kinetic energy of the molecules and potential
energy of their interaction. Note that in a medium where the potential energy of molecule
interaction can be neglected (e.g., in the perfect gas) the internal energy is equal to the total
kinetic energy of molecules. Another parameter of the medium is temperature which is
proportional to the mean kinetic energy of the molecules. In practice the inner energy can
be a function of temperature and density and/or other parameters that will be described later
in this Chapter, however, a particular functional dependence is determined by the medium in
question. For instance,

() () constadTTcTU
T

T

V +−= ∫ ρρ
0

,

for a Van der Vaalse gas and

() () () ()0

0

, TUdTTcTUTU
T

T
V +== ∫ρ

(1)

for the perfect gas and incompressible fluid, wherein ()TcV is the thermal capacity/specific

heat of the medium (at constant density if the internal energy does depend on density).
Throughout this work we will use formula (1) that establishes relationship between the
internal energy and temperature.

Page 4 of 44

Let us denote via ()tV the domain occupied by an infinitesimally small particle of the
continuum at a moment t. So long as there occurs no external mass transfer, the particle mass
is conserved and the following conservation of mass equation holds:

()
()

0,,, 331 == ∫
tV

dxxxx
dt
d

dt
dm ρ (in Euler coordinates)

or

() () ()() ()
()

0
,,,

det,,,,,,,,,,,,
*

321
321332123211 =

∂

∂= ∫
=ttV

j

i

d
tx

ttxtxtx
dt
d

dt
dm ξ

ξ
ξξξξξξξξξξξξρ

where Euler coordinates at an arbitrary fixed moment *tt = are used as Lagrange
coordinates. Differentiating the integral expression we obtain the following continuity
equation:

() () [] 0div
,,, 321

=∇+=+
∂

∂ i
it v

t
txxx ρρρρ

v .

(2)

Any two adjacent infinitesimal volumes of a continuum act upon each other, and the force of
their interaction is a surface force proportional to the contact surface between them. If the
surface force acting opposite to the direction of (not necessarily parallel to) the unit normal n
to a surface is denoted np then the momentum balance equation for the above particle can
be spelled out like this:

() ()
()

() ()
() () ()

∫∫∫
∂=Σ

+=
tVt
n

tVtV

ddxtxxxtxxxdxtxxxtxxx
dt
d σρρ pFv ,,,,,,,,,,,, 331331331331

.

Where F stands for the density of external mass forces (internal mass forces are negligible). It

can be easily demonstrated that j
iji

nn npp ==p where ijp is the contravariant stress

tensor. Using Gauss integral formula and equation (2) the above equation can be reduced to
the following dirrential form

or in differential form:

3,2,1, =∇+=

∇+

∂
∂= ipFvv

t
v

dt
dv ij

j
ii

j
j

ii

ρρρ (3)

System of equations (3) is referred to as Euler Equations.

For the total (kinetic plus internal) energy of the particle we have:

() () () () () ()
∫∫∫∫
∂=Σ∂=Σ

−+=

+

tVt
heat

tVt
n

tVtV

dddxdx
v

U
dt
d σσρρ nqvpFv

2

2

Page 5 of 44

– in the above equation we assume that any change of the total energy of the particle is the
effect of work performed by external mass forces, work of internal stress (e.g., surface
forces) and heat transfer (heatq stands for the heat flow vector). Using Gauss integral
formula we obtain:

[] j
heatji

ij
ji

i
i

i
j

j
i

i

i

qvpvFvvv
t
v

dt
dU

v
dt
dv

dt
dUv

dt
d

dt
dU ∇−∇+=

∇+

∂
∂+=

+=

+ ρρρρ

2

2

(4)

By virtue of (3) we get:

ij
jii

i
i

i
j

j
i

i

i

pvvFvvv
t
v

v
dt
dv ∇+=

∇+

∂
∂= ρρρ (5)

Subtracting (5) from (4) and using (1) we arrive at the following equation for internal energy:

j
heatjij

ij
j

j
VV qvpTv

t
T

Tc
dt
dT

Tc
dt
dU ∇−∇=

 ∇+

∂
∂==)()(ρρρ .

(6)

According to Fourier Law for the heat flow we have Tq ii
heat ∇=κ wherein κ is the thermal

conductivity coefficient of the medium. Hence (6) takes the form of a heat equation:

TvpTv
t
T

Tc j
jij

ij
j

j
V ∇∇+∇=

 ∇+

∂
∂ κρ)(.

(7)

Note that (7) assumes that the medium is insulated from the ambient and no heat transfer
occurs across the boundary. Otherwise, near the boundary of the domain where the medium
is contacting ambient environment, the heat flow will be the combination of the flow within
the medium and flow through the boundary (see Fig. 1)

[] boundaryambinetboundaryboundaryheat TTT nq −+−= δκκ grad

(8)

where ambinetT is the ambient temperature outside of the domain boundary, boundaryn is

the external unit normal to the boundary, boundaryκ is the heat conductivity of the boundary
(that is the amount of heat transferred per second per Calvin from inside the domain where
the flow is taking place, through whatever boundary layer and thence across the boundary
into the ambient), boundaryδ is the single-layer potential.

Page 6 of 44

Fig.1. Heat transfer inside the flow and through the boundary

2. Viscous Liquid

In this section we will spell out the governing equations presented in Section 1 for particular
cases of viscous incompressible fluid and viscous compressible gas. Furthermore, we will
explain the physical meaning of the right-hand side of the equation (6).

In the viscous liquid (gas) the stress tensor yields itself to the following representation:

kl
ijklijijijij eApgp =+−= ττ ,

(9)

where p is a scalar function referred to as pressure, and ()lkklkl vve ∇+∇=
2
1

 is the

deformation rate tensor. If all the components of the contravariant (4,0) tensor ijklA are 0
then (9) is the stress tensor of the perfect gas/liquid.

If the studied liquid is isotropic (e.g., its properties are invariant of the spatial rotations and
reflections) then the contravariant tensor ijklA can be shown to be determined by two
independent parameters and the strain tensor to have the following form:

kl
jlik

k
ijij

kl
jliijijij eggvgpgegggpgp κκ µλµλ 22 +∇+−=++−= vdiv

(10)

or

ijk
k

ijijij evgpgp µλ 2+∇+−=
(11)

where λµ, are dynamic viscosity and Lamé coefficient respectively. Substituting (11) into
(3) we obtain the following Navier-Stokes equations governing the flow of a viscous
compressible liquid:

Page 7 of 44

() 3,2,1,divgradgrad =∇∇+++−=

∇+

∂
∂= ivpFvv

t
v

dt
dv i

k
kii

j
j

ii

µµλρρρ v

(12)

that are reduced into

3,2,1,grad =∇∇+−=

∇+

∂
∂

ivpFvv
t
v i

k
kii

j
j

i

µρρ .

(13)

for an incompressible viscous liquid.

The term () 3,2,1,divgrad =∇∇++ ivi
k

kµµλ v in (12, 13) quantifies the effect of

internal “friction” between different layers of the liquid flowing at different speeds – hence

the derivatives of velocity in (12) – and the term ij
ij vp ∇ in (6) quantifies the effect of

stress on the internal energy. The latter effect can be further elaborated as follows:

ij
ij

ij
ij

ij
ij vvpgvp ∇+∇−=∇ τ (14)

and

j
heatjij

ij
ij

ij
j

j
VV qvvpgTv

t
T

Tc
dt
dT

Tc
dt
dU ∇−∇+∇−=

 ∇+

∂
∂== τρρρ)()(

(15)

By virtue of (2) we obtain ρ
ρ dtd

vvvg i
ii

i
ij

ij /−=∇=∇=∇ , hence
dt
dp

vpg ij
ij ρ

ρ
=∇−

and

j
heatjij

ij qv
dt

d
p

dt
dU ∇−∇+−=

ρ
τ

ρ
ρ 11/1

(16)

Note that for a reversible process in a perfect inviscid compressible liquid we would have (see
[LS])

dt
ds

T
dt

d
p

dt
dU +−= ρ/1

(17)

where s is the entropy. Therefore, assuming that (17) holds for viscous liquids as well (Gibbs
Formula), we obtain:

j
heatjij

ij qv
dt
ds

T ∇−∇=
ρ

τ
ρ

11
(18)

The term ij
ij v∇τ

ρ
1

 quantifies the amount of kinetic energy converted into heat due to

viscosity and (14) is the amount of kinetic energy converted into internal energy.

Page 8 of 44

The presented mathematical model fails to take into account the effect of friction between the
medium and boundary of the domain where the motion is taking place. Such a friction would
result in an irreversible production of heat, contributing a positive term to the right-hand
sides of equations (16) and (18), and resulting in an equal decrease of the kinetic and/or
potential energy in (12) (Note that the production of heat due to friction does not always
result in a corresponding decrease of the kinetic energy – decrease of the potential energy
(e.g., pressure) may compensate the loss). The next Chapter presents a mathematical model
of the flow of a viscous liquid in a steel pipeline that includes the effect of friction against
pipe walls.

Page 9 of 44

Chapter II. Mathematical Model of a Steady-state
Flow through a Steel Pipeline

In this Chapter the governing equations introduced in Chapter I are adapted to a
mathematical model of the flow of a viscous incompressible liquid in a steel pipeline.

3. Pipeline

In this Chapter we develop a mathematical model of the steady-state functioning of a
hydrocarbon pipeline. Our ultimate objective is to develop software that will be able to
automatically locate PS and PRS along pipeline route and upgrade an existing system of
intermediate PS to ensure desired productivity. Unless specified otherwise, the product being
transported is considered to be an incompressible viscous liquid (e.g., crude oil, petrol,
kerosene, etc). The following is a brief summary of how large hydrocarbon pipeline systems
are operated.

A typical large liquid-phase hydrocarbon pipeline transportation system consists of hundreds
of kilometres of large diameter (>=400mm) line pipe and auxiliary facilities (valve stations,
intermediate pump and pressure reducing stations, metering units, etc.) Due to a relatively
high viscosity of hydrocarbon products (especially waxy oils) friction between the transported
product and pipeline walls results in sharp pressure drops (see Fig.4). It can be easily seen

from the Bernoulli equation constgzp
v ≡+−
2

2ρ that the operating pressure of a steady-

state flow cannot drop below the atmospheric pressure. However, in applications the
operating pressure is maintained above saturation pressure to prevent product vaporisation
because that may result in the formation of gas pockets with potentially unpredictable
consequences. Additionally, operational circumstances may require that a specified minimum
pressure be delivered at pump or tank suction (see Fig. 7).

The maximum allowed operating pressure of the pipeline is determined based on the yield
strength of pipe material, overall diameter and pipe wall thickness (see Fig. 2) using the
following formula:

Page 10 of 44

Fig.2. Principal pipeline characteristics affecting the flow.

orDesignFactgYS
OD
WT

MAOP ⋅⋅= 2

(19)

where WT, OD, YS denote wall thickness in metres, overall diameter in metres and yield
strength in kilograms per square metre. A design factor is applied for safety margin.

MAOP can be converted into the maximum allowed operating head (MAOH) using the formula

elevation
g

MAOP
MAOH +=

ρ .

(20)

MAOP and MAOH are shown as magenta lines on Fig. 7 and Fig. 9 respectively.

The proposed model is based on the following assumptions:

1 velocity of the product is constant at all points of pipeline cross-section and parallel to
the pipeline axis;

2 the flow rate is constant;

3 pressure drop (and temperature rise) arises due to friction of product against pipeline
walls; the latter depends on the speed of the product, diameter of the line pipe and
roughness of the pipe walls;

KM POST EL (M) KM (m) OD (IN) WT (IN)
YIELD
(PSI) OD (m) WT (m)

T
emp

0 -25.5 0 20.86614 0.314961 47681 0.53 0.008 5

0.126 -11.9 126 20.86614 0.314961 47681 0.53 0.008 5

0.252 -2.4 252 20.86614 0.314961 47681 0.53 0.008 5

0.346 7.56 346 20.86614 0.314961 47681 0.53 0.008 5

0.423 4.48 423 20.86614 0.314961 47681 0.53 0.008 5

Page 11 of 44

0.742 -1.63 742 20.86614 0.314961 47681 0.53 0.008 5

0.935 1.6 935 20.86614 0.314961 47681 0.53 0.008 5

1.078 3.23 1078 20.86614 0.314961 47681 0.53 0.008 5

1.515 14.35 1515 20.86614 0.314961 47681 0.53 0.008 5

1.782 17.28 1782 20.86614 0.314961 47681 0.53 0.008 5

2.384 25.76 2384 20.86614 0.314961 47681 0.53 0.008 5

2.863 20.76 2863 20.86614 0.314961 47681 0.53 0.008 5

3.003 21.5 3003 20.86614 0.314961 47681 0.53 0.008 5

3.362 18.78 3362 20.86614 0.314961 47681 0.53 0.008 5

3.901 16.76 3901 20.86614 0.314961 47681 0.53 0.008 5

3.915 16.41 3915 20.86614 0.314961 47681 0.53 0.008 5

4.281 13.91 4281 20.86614 0.314961 47681 0.53 0.008 5

4.729 12.31 4729 20.86614 0.314961 47681 0.53 0.008 5

4.946 10.98 4946 20.86614 0.314961 47681 0.53 0.008 5

5.361 10.61 5361 20.86614 0.314961 47681 0.53 0.008 5

5.637 8.5 5637 20.86614 0.314961 47681 0.53 0.008 5

5.873 4.64 5873 20.86614 0.314961 47681 0.53 0.008 5

6.199 4.93 6199 20.86614 0.314961 47681 0.53 0.008 5
Fig.3. Fragment of a pipeline datasheet. Columns contain KM posts, elevation,

overall line pipe diameter in inches, line pipe wall thickness in inches,
steel yield strength in pounds per square inch, ambient temperature in degrees Celsius.

4 any flow and pipeline parameters are assumed constant within discrete segments in
between
km points but change across segments (see Fig. 3 and 4);

5 temperature changes slowly along the pipeline and heat transfer through the product
can be neglected.

Fig.3. demonstrates a fragment of a typical pipeline datasheet. All parameters are specified
for discreet segments each from a few hundred to a few thousand metres in length.

4. Model

The purpose of this section is to adapt the governing equations of Chapter I to the problem in
question based on the assumptions of Section 3.

We will assume that the kinematical viscosity and density are known functions depending

“slowly” on temperature – i.e., () 1, <<== εε
ρ
µν Tf and () 1, <<= εερ Tg , flow rate

Q and product specific heat Vc are constants. Given a value of the desired head at
terminal, pipeline profile and properties (see Fig. 3), we will locate PS and PRS along the
route so as to ensure the desired steady-state flow.

For velocity of the product in segment i we have:

() ()iD

Q
iv

2

4

π
= (21)

Page 12 of 44

where () ()iDiv , are speed of the product in, and inner diameter of, the i-th pipeline
segment.

For the momentum balance (see (3)) we obtain:

()() () () () ()
() ()

()() () () ()
() () ()() () ()

() ()
() ()
() () ()() ()

() () ()iviv
iD

i
iT

ikmikm
ipip

ikmikm
ii

giT
ikmikm

iviv
iviT

ikmikm
iviv

iv
t
iv

iT

21
1

1
1elel

1
1

1
1

λρ

ρρ

ρ

−
−−

−−−

−
−−

−−−=
−−

−−=

=

−−

−−+
∂

∂

(22)

where el(i) is the elevation of the i-th segment, ()ip is the product pressure in the segment,
() ()ikmikm ,1− are the beginning and the end of the segment. The last term in the right-

hand side of (22) is the semi-empirical Darcy friction term (see [DH]), ()iλ is a
dimensionless friction factor. We use the following empirical rule for calculating the latter:

If the Reynolds number () () ()
() 2000ReRe ≤==
i

iDiv
i

ν then

() ()ii
Re
64=λ (23)

otherwise

() ()
() () ()

+⋅−= −− i

iiD
ir

i 5.05.0

Re
51.2

7.3
lg2 λλ

(24)

where ()ir is the pipeline wall roughness (see Fig.2 and 3).

Page 13 of 44

Fig.4. All flow and pipeline parameters are assumed constant within discrete segments in
between

km points but may change across segments.

Newton’s bi-quadratic method can be used for solving the algebraic equation (24).

Eventually, for energy balance we have:

()() () () () ()
() ()

()() () () ()
() ()

()
() () ()[] ()() ()

() () 3

2
4

1
1

1
1

iv
iD

i
iTiTiT

iD
iU

ikmikm
iTiT

ivciT

ikmikm
iTiT

iv
t
iT

ciT

ambV

V

λρρ

ρ

+−−=
−−

−−=

=

−−

−−+
∂

∂

(25)

where ()iU denotes the overall heat transfer coefficient through the turbulent boundary

layer and pipeline wall, and ()iTamb is the ambient temperature at the i-th segment. Note

that heat transfer through the product is neglected based on the assumption 5 of the previous
Section. Heat conductivity through the turbulent boundary layer is adequately described by
the following (empirical) formula:

() () ()() () 8/iviTcii Vblayer ρλκ =
(26)

Hence for ()iU as the heat transfer coefficient of two adjacent media we obtain:

() () ()() 111 −−− += iiiU wallblayer κκ
(27)

Page 14 of 44

where ()iwallκ is the heat conductivity of the i-th segment’s walls.

Page 15 of 44

Chapter III. Flow Simulation

This chapter briefly discusses an application that implements the model described in the
previous Chapter (see [MM]).

5. Interfaces and Output

Fig. 5 and 6 show principal data entry and control interfaces of the application. The
application has been implemented using VBA modules imbedded in an MS Excel spreadsheet.

Fig.5. Principal System Interface.

The application’s data input interface (see Fig. 6) allows the user to feed all pipeline and
product parameters and initial values in a tabulated format in a spreadsheet (se Fig.3).

Fig.6. Data Input Interface.

Fig. 7-12 illustrate the application’s sample output that is generated using Excel’s charting
capabilities.

6. Location of PS and PRS

The application’s capabilities of automated PS/PRS location as well as upgrade of an existing
layout are the features that make this application unique in its class.

Page 16 of 44

The following upgrade was suggested by the application for the pipeline whose profile is
shown on Fig.9 which had two existing pump stations at Km 350 and Km 650:

Suggested Upgrade (+1 = PS, -1 = PRS):
972196.

7 11 -1
920000 1
789084.

9 1
763065.

9 -1
696856.

8 1
592107.

2 1
497139.

4 1
390000 1
312108.

2 1
206103.

4 1
70201.1

3 1
118597.

2 1
16368.8

2 1

The following listing shows the application’s UpgradeStations() function.

Public Sub UpgradeStations()
Dim i As Integer, j As Integer, x As Double, h As Double, Delta As Double
Dim k As Integer, upgrade As Integer
Dim old_h As Double, h1 As Double

 If Not DataLoaded Then MsgBox "No data": Exit Sub
 TerminalHead = Val(Worksheets("DATA").Range("TerminalHead").Value)
 N = Val(Worksheets("DATA").Range("NoOfKmPosts").Value)

 If TerminalHead < Profile(N - 1) Then _
 MsgBox "Destination head must be in excess of elevation", , _
 "Ordos 99": Exit Sub
 ProgressOn
 With Application.Worksheets("DATA")
 UpgradedNoOfStations = .Range("UPGRADENOOFSTATIONS").Cells(1, 1).Value
 For j = 0 To UpgradedNoOfStations - 1
 UpgradeStX(j) = .Range("UPGRADESTATIONSX").Cells(1 + j, 1).Value
 UpgradeStation(j) = .Range("UPGRADESTATIONTYPES").Cells(1 + j, 1).Value
 Call ShowProgress("Loading upgraded station data...", j + 1, UpgradedNoOfStations)
 Next j
 End With

 ProgressOff
 ProgressOn
 NoOfStations = 0: h = TerminalHead: i = N - 1: x = Km(N - 1)
 upgrade = 0
 ' x = latest studied node co-ordinate
 While i > 0

Page 17 of 44

 i = i - 1
 h_old = h
 h = h + Gradient(i) * (x - Km(i))
 If Km(i) <= UpgradeStX(upgrade) And upgrade < UpgradedNoOfStations Then
 x = UpgradeStX(upgrade)
 h = h - Gradient(i) * (x - Km(i))
 upgrade = upgrade + 1
 If UpgradeStation(upgrade - 1) = 1 Then ' upgraded pump
 Delta = h
 GoTo AddPump
 Else ' upgraded regulator
 GoTo AddRegulator
 End If
 ElseIf h <= Profile(i) Then ' run into ground - regulator site
 x = IntersectionOf(Km(i), Km(i + 1), Profile(i), Profile(i + 1), Km(i), x, h, h_old)

 ' equate h to just elevation of point x on the profile
 h = Profile(i) + (x - Km(i)) * (Profile(i + 1) - Profile(i)) / (Km(i + 1) - Km(i))
 ' add a reduction station
AddRegulator:
 StX(NoOfStations) = x: Station(NoOfStations) = -1

 j = HighPoint(x, h)

 If j = -1 Then MsgBox "Error High Point", , "Ordos 99": Exit Sub

 Delta = 0
 If j < i Then
 For k = j To i - 1
 Delta = Delta + (Km(k + 1) - Km(k)) * Gradient(k)
 Next k
 End If
 Delta = Delta + (x - Km(i)) * Gradient(i)

 ' profile too high
 'If Profile(El(j)) > Operating(j) Then
 ' MsgBox "Elevation at point " & Format(Km(j), "##.##") & " exceeds OP", , _
 ' "Ordos 99 - calculation aborted"
 ' ProgressOff
 ' Exit Sub
 'End If

 ' head reduction
 DeltaH(NoOfStations) = Profile(j) - Delta - h
 h = h + DeltaH(NoOfStations)
 NoOfStations = NoOfStations + 1
 h = h + 0.01 ' margin
 ElseIf h >= PumpOrOp(i) Then ' exceeded OP - pump site
 x = IntersectionOf(Km(i), Km(i + 1), _
 PumpOrOp(i), PumpOrOp(i + 1), _
 Km(i), x, h, h_old)

 Delta = PumpOrOp(i) + (x - Km(i)) * _
 (PumpOrOp(i + 1) - PumpOrOp(i)) / _
 (Km(i + 1) - Km(i))
AddPump:
 ' minimum suction pressure
 h = Profile(i) + (x - Km(i)) * _
 (Profile(i + 1) - Profile(i)) / _
 (Km(i + 1) - Km(i))
 h = Maximum(h, El(i) + MinPumpSuct / (Density(i) * gravity))
 StX(NoOfStations) = x

 j = HighPoint(x, h)

 If j <> -1 Then
 h1 = Profile(j)
 If j < i Then
 For k = j To i - 1

Page 18 of 44

 h1 = h1 - (Km(k + 1) - Km(k)) * Gradient(k)
 Next k
 End If
 h1 = h1 - (x - Km(i)) * Gradient(i)
 If h1 > h Then h = h1
 End If

 Delta = Delta - h

 ' add a pump station
 Station(NoOfStations) = 1
 DeltaH(NoOfStations) = Delta
 NoOfStations = NoOfStations + 1
 h = h + 0.01 ' margin
 Else ' carry on OK
 x = Km(i)
 End If
 If i Mod 2 = 0 Then _
 Call ShowProgress("Upgrading station layout...", N - i, N - 1)
 Wend
 ProgressOff
 ProgressOn
 ' save station locations and delta head
 With Application.Worksheets("DATA")
 .Range("NOOFSTATIONS").Cells(1, 1).Value = _
 NoOfStations
 For j = 0 To NoOfStations - 1
 .Range("STATIONS").Cells(1 + j, 1).Value = _
 StX(j)
 .Range("DELTAHEAD").Cells(1 + j, 1).Value = _
 DeltaH(j)
 .Range("STATIONTYPES").Cells(1 + j, 1).Value = _
 Station(j)
 If j Mod 5 = 0 Then _
 Call ShowProgress("Storing station data...", j, N - 1)
 Next j
 End With

 ProgressOff
 Call InstallStations
 End Sub

Page 19 of 44

OPERATING PRESSURE-OPTION 4D 10MTA

0

10

20

30

40

50

60

70

80

0

18
49

5

39
98

6

63
64

7

78
45

6

97
57

6

13
29

46

17
89

46

22
69

46

27
69

46

32
29

46

36
79

46

41
19

46

44
59

46

47
59

46

49
81

96

51
85

06

55
59

46

59
93

16

62
83

16

66
51

16

69
73

16

73
03

16

75
89

06

76
63

66

77
36

66

78
43

66

79
11

46

80
51

96

83
41

66

87
91

66

92
61

66

95
85

46

97
04

06

Metres

B
ar

s

Operating Pressure

MAOP

Pump suction

Minimal pressure

Fig.7. Pipeline MAOP and Operating Pressure. Drop in MAOP at around
Km780 is

due to a segment of old pipe.

PUMP AND REDUCTION STATIONS-OPTION 4D 10MTA

557.5208881

765.5589754

642.1547453

548.9743734

365.2449772

590.9724393

661.2345716

639.9090277

-56.89440777

-107.3950921

-200

-100

0

100

200

300

400

500

600

700

800

900

97
22

00

91
14

55

76
29

91

69
60

06

59
16

36

49
67

83

38
18

09

29
97

54

19
37

66

63
09

0

Metres

M
et

re
s

Stations

Fig.8. Qty 2 PRS and Qty 8 PS along a 1000 km 10MTA oil pipeline

Page 20 of 44

Profile, MAOH and Head-OPTION 4D 10MTA

-500

0

500

1000

1500

2000

0

17
53

2

35
06

4

52
59

6

70
12

8

87
65

9

10
51

91

12
27

22

14
02

54

15
77

85

17
53

17

19
28

49

21
03

81

22
79

12

24
54

44

26
29

75

28
05

07

29
80

38

31
55

70

33
31

02

35
06

34

36
81

65

38
56

97

40
32

28

42
07

60

43
82

92

45
58

23

47
33

55

49
08

87

50
84

19

52
59

50

54
34

82

56
10

13

57
85

45

59
60

76

61
36

08

63
11

40

64
86

72

66
62

03

68
37

35

70
12

66

71
87

98

73
63

29

75
38

61

77
13

93

78
89

25

80
64

56

82
39

88

84
15

19

85
90

51

87
65

83

89
41

14

91
16

46

92
91

78

94
67

10

96
42

41

Metres

M
et

re
s

Elevation

MAOH

Fig.9. MAOP converted into MAOH (magenta line)

Profile, MAOH and Head-OPTION 4D 10MTA

-500

0

500

1000

1500

2000

0

17
53

2

35
06

4

52
59

6

70
12

8

87
65

9

10
51

91

12
27

22

14
02

54

15
77

85

17
53

17

19
28

49

21
03

81

22
79

12

24
54

44

26
29

75

28
05

07

29
80

38

31
55

70

33
31

02

35
06

34

36
81

65

38
56

97

40
32

28

42
07

60

43
82

92

45
58

23

47
33

55

49
08

87

50
84

19

52
59

50

54
34

82

56
10

13

57
85

45

59
60

76

61
36

08

63
11

40

64
86

72

66
62

03

68
37

35

70
12

66

71
87

98

73
63

29

75
38

61

77
13

93

78
89

25

80
64

56

82
39

88

84
15

19

85
90

51

87
65

83

89
41

14

91
16

46

92
91

78

94
67

10

96
42

41

Metres

M
et

re
s Elevation

MAOH

Head

Fig.10. Elevation, head and MAOH. Vertical rises of head match PS locations.
Vertical drops are PRS locations. Slanted head indicate pressure/head

gradient due to friction.

Page 21 of 44

AMBIENT AND PRODUCT TEMPERATURES-OPTION 4D 10MTA

0

2

4

6

8

10

12

14

0

19
04

2

42
03

6

64
87

6

80
22

6

10
30

26

14
49

46

19
29

46

24
29

46

29
29

46

33
99

46

38
84

46

42
93

46

46
39

46

48
89

46

51
00

71

53
99

46

58
63

16

62
23

16

65
83

16

69
30

16

72
53

16

75
79

66

76
60

16

77
36

66

78
43

96

79
16

66

80
60

66

84
11

66

88
81

66

93
81

66

96
36

66

97
23

86

Metres

D
eg

. C
el

si
u

s

Ambient Temperature

Product Temperature

Fig.11. Product and ambient temperature. The product temperature steadily grows
from 5 to over 12 degrees Celsius due to irreversible production of heat.

Gradient-OPTION 4D 10MTA

0.0055

0.0056

0.0057

0.0058

0.0059

0.006

0.0061

0.0062

0.0063

0

18
72

0

40
97

6

64
13

1

79
52

6

10
03

26

13
89

46

18
59

46

23
49

46

28
49

46

33
19

46

37
89

46

42
09

46

45
49

46

48
16

71

50
55

36

52
89

46

57
13

16

61
23

16

64
00

16

67
73

16

71
30

16

74
79

66

76
35

66

76
87

66

77
72

86

78
89

66

79
72

46

81
43

66

86
01

66

90
81

66

95
19

06

96
80

66

97
66

66

Metres

Gradient

Fig.12. Pressure gradient. Two dips at the beginning and in the centre correspond to a higher
quality line pipe.

Page 22 of 44

Appendix A. Source Code of the Data Module

Public Sub Edit_Exercise()
 With Application.Worksheets("DATA")
 EditExercise.Controls("ProjectName").Text = _
 .Range("ProjectName").Value

 EditExercise.Controls("NoOfKmPosts").Value = _
 .Range("NoOfKmPosts").Value

 EditExercise.Controls("Q").Value = _
 .Range("Q").Value

 EditExercise.Controls("SGCell").Value = _
 .Range("SGCell").Value

 EditExercise.Controls("TerminalHead").Value = _
 .Range("TerminalHead").Value

 EditExercise.Controls("KMPostCell").Text = _
 .Range("KMPostCell").Value

 EditExercise.Controls("ElevationCell").Text = _
 .Range("ElevationCell").Value

 EditExercise.Controls("ODCell").Text = _
 .Range("ODCell").Value

 EditExercise.Controls("WTCell").Text = _
 .Range("WTCell").Value

 EditExercise.Controls("YSCell").Text = _
 .Range("YSCell").Value

 EditExercise.Controls("RoughnessCell").Text = _
 .Range("RoughnessCell").Value

 EditExercise.Controls("HTRCell").Text = _
 .Range("HTRCell").Value

 EditExercise.Controls("HCCell").Text = _
 .Range("HCCell").Value

 EditExercise.Controls("InitialTemperature").Text = _
 .Range("InitialTemperature").Value

 EditExercise.Controls("DesignFactorCell").Text = _
 .Range("DesignFactorCell").Value

 EditExercise.Controls("TemperatureCell").Value = _
 .Range("TemperatureCell").Value

Page 23 of 44

 EditExercise.Controls("KVCell").Value = _
 .Range("KVCell").Value

 End With
 VBAProject.EditExercise.Show
End Sub

Public Sub Store_Exercise()
 With Application.Worksheets("DATA")
 .Range("ProjectName").Value = _
 EditExercise.Controls("ProjectName").Text

 .Range("DesignFactorCell").Value = _
 EditExercise.Controls("DesignFactorCell").Text

 .Range("NoOfKmPosts").Value = _
 EditExercise.Controls("NoOfKmPosts").Value

 .Range("Q").Value = _
 EditExercise.Controls("Q").Value

 .Range("TemperatureCell").Value = _
 EditExercise.Controls("TemperatureCell").Value

 .Range("TerminalHead").Value = _
 EditExercise.Controls("TerminalHead").Value

 .Range("KMPostCell").Value = _
 EditExercise.Controls("KMPostCell").Text

 .Range("ElevationCell").Value = _
 EditExercise.Controls("ElevationCell").Text

 .Range("ODCell").Value = _
 EditExercise.Controls("ODCell").Text

 .Range("WTCell").Value = _
 EditExercise.Controls("WTCell").Text

 .Range("YSCell").Value = _
 EditExercise.Controls("YSCell").Text

 .Range("RoughnessCell").Value = _
 EditExercise.Controls("RoughnessCell").Text

 .Range("HTRCell").Value = _
 EditExercise.Controls("HTRCell").Text

 .Range("HCCell").Value = _
 EditExercise.Controls("HCCell").Text

 .Range("InitialTemperature").Value = _
 EditExercise.Controls("InitialTemperature").Text

Page 24 of 44

 .Range("DesignFactorCell").Value = _
 EditExercise.Controls("DesignFactorCell").Text

 .Range("TemperatureCell").Value = _
 EditExercise.Controls("TemperatureCell").Value

 .Range("KVCell").Value = _
 EditExercise.Controls("KVCell").Value

 .Range("SGCell").Value = _
 EditExercise.Controls("SGCell").Value

 End With
 MATH.LoadData

End Sub

Public Sub ShowProgress(ByVal JobName As String, _
ByVal Value As Double, ByVal MaxValue As Double)
 Application.StatusBar = JobName & " " & _
 Format(Value * 100 / MaxValue, "##") & "% done"
End Sub

Public Sub ProgressOn()
 Application.StatusBar = ""
End Sub

Public Sub ProgressOff()
 Application.StatusBar = "Ready"
End Sub

' return sheet name
Public Function SheetName(ByVal CellName As String) As String
 Dim i As Integer
 i = InStr(1, Range(CellName).Worksheet, "!", 1)
 If i > 0 And i <> Null Then
 SheetName = Left(CellName, i - 1)
 Else
 SheetName = ""
 End If
End Function

Public Function RangePointedToBy(ByVal CellName As String) As String
 Dim SName As String
 Dim r1, c1, r2, c2
 r1 = Range(Application.Range(CellName).Value).Cells(1, 1).Row
 c1 = Range(Application.Range(CellName).Value).Cells(1, 1).Column
 r2 = Range(Application.Range(CellName).Value).Cells(N, 1).Row
 c2 = Range(Application.Range(CellName).Value).Cells(N, 1).Column
 SName = Range(Application.Range(CellName).Value).Worksheet.Name
 RangePointedToBy = SName & "!R" & Format(r1, "#") & "C" & _
 Format(c1, "#") & ":R" & Format(r2, "#") & "C" & Format(c2, "#")
End Function

Page 25 of 44

Public Function RangeWithTopAt(ByVal CellName As String) As String
 Dim SName As String
 Dim r1, c1, r2, c2
 r1 = Range(CellName).Cells(1, 1).Row
 c1 = Range(CellName).Cells(1, 1).Column
 r2 = Range(CellName).Cells(N, 1).Row
 c2 = Range(CellName).Cells(N, 1).Column
 SName = Range(CellName).Worksheet.Name
 RangeWithTopAt = SName & "!R" & Format(r1, "#") & "C" & _
 Format(c1, "#") & ":R" & Format(r2, "#") & "C" & Format(c2, "#")
End Function

Public Function ColumnWithTopAtOfHeight(ByVal CellName As String, ByVal Height As
Integer) As String
 Dim SName As String
 Dim r1, c1, r2, c2
 r1 = Range(CellName).Cells(1, 1).Row
 c1 = Range(CellName).Cells(1, 1).Column
 r2 = Range(CellName).Cells(Height, 1).Row
 c2 = Range(CellName).Cells(Height, 1).Column
 SName = Range(CellName).Worksheet.Name
 ColumnWithTopAtOfHeight = SName & "!R" & Format(r1, "#") & "C" & _
 Format(c1, "#") & ":R" & Format(r2, "#") & "C" & Format(c2, "#")
End Function

Public Sub ModifyHeadPlot()
 Sheets("HEAD_AND_EL").Select
 With ActiveChart
 .ChartType = xlLine
 .SeriesCollection(1).XValues = "=" & RangePointedToBy("KmPostCell")

 .SeriesCollection(1).Values = "=" & RangePointedToBy("ElevationCell")

 .SeriesCollection(1).Name = "=""Elevation"""
 .SeriesCollection(2).Values = "=" & RangeWithTopAt("MAOH")
 .SeriesCollection(2).Name = "=""MAOH"""
 .SeriesCollection(3).Values = "=" & RangeWithTopAt("Head")
 .SeriesCollection(3).Name = "=""Head"""
 .HasTitle = True
 .ChartTitle.Characters.Text = "Profile, MAOH and Head" & "-" &
Application.Worksheets("DATA").Range("ProjectName").Value
 .Axes(xlCategory, xlPrimary).HasTitle = True
 .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Metres"
 .Axes(xlValue, xlPrimary).HasTitle = True
 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Metres"
 End With
End Sub

Public Sub ModifyGradientPlot()
 Sheets("GRADIENT").Select
 With ActiveChart
 .ChartType = xlLine

Page 26 of 44

 .SeriesCollection(1).XValues = "=" & RangePointedToBy("KmPostCell")
 .SeriesCollection(1).Values = "=" & RangeWithTopAt("GRAD")
 .SeriesCollection(1).Name = "=""Gradient"""

 .HasTitle = True
 .ChartTitle.Characters.Text = "Gradient" & "-" &
Application.Worksheets("DATA").Range("ProjectName").Value
 .Axes(xlCategory, xlPrimary).HasTitle = True
 .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Metres"
 .Axes(xlValue, xlPrimary).HasTitle = True
 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = ""
 End With
End Sub

Public Sub ModifyTemperaturePlot()
 Sheets("TEMPERATURE").Select
 With ActiveChart
 .ChartType = xlLine
 .SeriesCollection(1).XValues = "=" & RangePointedToBy("KmPostCell")

 .SeriesCollection(1).Values = "=" & RangePointedToBy("TemperatureCell")

 .SeriesCollection(1).Name = "=""Ambient Temperature"""
 .SeriesCollection(2).Values = "=" & RangeWithTopAt("TEMP")
 .SeriesCollection(2).Name = "=""Product Temperature"""
 .HasTitle = True
 .ChartTitle.Characters.Text = "AMBIENT AND PRODUCT TEMPERATURES" & "-" &
Application.Worksheets("DATA").Range("ProjectName").Value
 .Axes(xlCategory, xlPrimary).HasTitle = True
 .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Metres"
 .Axes(xlValue, xlPrimary).HasTitle = True
 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Deg. Celsius"
 End With
End Sub

Public Sub ModifyPressurePlot()
 Sheets("OP").Select
 With ActiveChart
 .ChartType = xlLine
 .SeriesCollection(1).XValues = "=" & RangePointedToBy("KmPostCell")
 .SeriesCollection(1).Values = "=" & RangeWithTopAt("PRESSURE")
 .SeriesCollection(1).Name = "=""Operating Pressure"""
 .SeriesCollection(2).Values = "=" & RangeWithTopAt("MAOPBARS")
 .SeriesCollection(2).Name = "=""MAOP"""

 .HasTitle = True
 .ChartTitle.Characters.Text = "OPERATING PRESSURE" & "-" &
Application.Worksheets("DATA").Range("ProjectName").Value
 .Axes(xlCategory, xlPrimary).HasTitle = True
 .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Metres"
 .Axes(xlValue, xlPrimary).HasTitle = True
 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Bars"
 End With

Page 27 of 44

End Sub

Public Sub ModifyStationsPlot()
 Sheets("STATIONS").Select
 With ActiveChart
 .SeriesCollection(1).XValues = "=" & ColumnWithTopAtOfHeight("STATIONS", _
 Application.Worksheets("DATA").Range("NOOFSTATIONS").Cells(1, 1).Value)
 .SeriesCollection(1).Values = "=" & ColumnWithTopAtOfHeight("HEADCHANGE", _
 Application.Worksheets("DATA").Range("NOOFSTATIONS").Cells(1, 1).Value)
 .SeriesCollection(1).Name = "=""Stations"""

 .HasTitle = True
 .ChartTitle.Characters.Text = "PUMP AND REDUCTION STATIONS" & "-" &
Application.Worksheets("DATA").Range("ProjectName").Value
 .Axes(xlCategory, xlPrimary).HasTitle = True
 .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Metres"
 .Axes(xlValue, xlPrimary).HasTitle = True
 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Metres"
 End With
End Sub

Sub Macro1()
'
' Macro1 Macro
' Macro recorded 9/2/98 by IT Department
'

'
 ActiveChart.SeriesCollection.NewSeries
 ActiveChart.SeriesCollection(4).Values = "=USER!R2C3:R9C3"
 ActiveChart.SeriesCollection(4).Name = "=""xx"""
End Sub

Page 28 of 44

Appendix B. Source Code of the Computations Module

Option Base 0

' maximum array index
Public Const MaxIndex = 2000

' Infinity
Public Const Infinity = 1E+20

' gravity acceleration
Public Const gravity = 9.81

' minimum pressure Newton/m2
Public Const MinimumPressure = 500000

' pump maximum discharge pressure Newton/m2
Public Const MaxPumpDisch = 1000000000

' operating pressure / maximum allowed operating pressure
Public Const OpByMaop = 0.909

' pump minimum suction pressure Newton/m2
Public Const MinPumpSuct = 600372

' the total No of km posts
Public N As Integer
' Pipeline flowrate
Public Q As Double

' oil specific gravity @ various temperatures
Public Ro(0 To 255) As Double
' various temp @ which Ro is given
Public RoTemp(0 To 255) As Double
' no of given Ro values
Public NoOfRoValues As Integer
' oil viscosity various temperatures
Public Nu(0 To 255) As Double
' various temp @ which Nu is given
Public NuTemp(0 To 255) As Double
' no of given Nu values
Public NoOfNuValues As Integer

' Ambient temperature on various segments
Public T(0 To MaxIndex) As Double
' Product temperature on various segments
Public Temp(0 To MaxIndex) As Double
' pipeline design factor used with yield strength
Public DesignFactor(0 To MaxIndex) As Double
' km post (input) m
Public Km(0 To MaxIndex) As Double
' elevation (input) m

Page 29 of 44

Public El(0 To MaxIndex) As Double
' overall diameter (input) m
Public OD(0 To MaxIndex) As Double
' wall thickness (input) m
Public WT(0 To MaxIndex) As Double
' yield strength (input) psi
Public YS(0 To MaxIndex) As Double
' pipe wall roughness
Public Roughness(0 To MaxIndex) As Double
' Heat Transfer Rate through pipeline surface
Public HeatTransferRate(0 To MaxIndex) As Double
' head (calc) m
Public Head(0 To MaxIndex) As Double
' maximum allowed operating pressure (calc) psi
Public MAOP(0 To MaxIndex) As Double
' maximum allowed operating head (calc) m
Public MAOH(0 To MaxIndex) As Double

' Heat capacity of the product
Public ProductHeatCapacity As Double

' No of pump and reduction stations
Public NoOfStations As Integer
' Pump and reduction stations +1 pump, -1 reduct
Public Station(0 To MaxIndex) As Integer
' Delta head @ each station (m)
Public DeltaH(0 To MaxIndex) As Double
' Station x coordinate (m)
Public StX(0 To MaxIndex) As Double
' upgradable station data
Dim UpgradeNoOfStations As Integer
Dim UpgradeStation(0 To MaxIndex) As Integer
Dim UpgradeStX(0 To MaxIndex) As Double

' matrix M[i,j] contains costs of achieving
' output head in the interval
' [HeadOut(j), HeadOut(j+1)] if the input head
' id in the interval [HeadOut(i), HeadOut(i+1)]
Public M(0 To MaxIndex, 0 To MaxIndex) As Double

' matrix contains input heads for an interval
Public HeadIn(0 To MaxIndex) As Double
' matrix contains output heads for an interval
Public HeadOut(0 To MaxIndex) As Double

Private Declare Sub MessageBeep Lib "User32" (ByVal N As Integer)
Sub CallMyDll()
 Call MessageBeep(0) ' Call Windows DLL procedure.
 MessageBeep 0 ' Call again without Call keyword.
End Sub

' this data can only be called if valid data

Page 30 of 44

Public Sub LoadData()
Dim i As Integer
'On Error GoTo InvalidData
 ProgressOn
 With Application.Worksheets("DATA")
 N = Val(.Range("NoOfKmPosts").Value)
 If N <= 1 Then
 MsgBox "No of KM posts must be an integer above 1", , "Ordos 99"
 GoTo InvalidData
 End If
 Q = Val(.Range("Q").Value)
 If Q <= 0 Then
 MsgBox "Flow rate must be a positive real", , "Ordos 99"
 GoTo InvalidData
 End If
 ' read table of Ro versus T
 i = 0
 While Not IsEmpty(Range(.Range("SGCell").Value).Cells(1 + i, 1).Value)
 Ro(i) = Val(Range(.Range("SGCell").Value).Cells(1 + i, 1).Value)
 RoTemp(i) = Val(Range(.Range("SGCell").Value).Cells(1 + i, 2).Value)
 If Ro(i) <= 0 Then
 MsgBox "Specific gravity must be a postive real", , "Ordos 99"
 GoTo InvalidData
 End If
 i = i + 1
 Wend
 ' if no table found ...
 If i = 0 Then
 MsgBox "At least one value of specific gravity must be specified", , "Ordos 99"
 GoTo InvalidData
 End If
 NoOfRoValues = i

 ' read table of Nu versus T
 i = 0
 While Not IsEmpty(Range(.Range("KVCell").Value).Cells(1 + i, 1).Value)
 Nu(i) = Val(Range(.Range("KVCell").Value).Cells(1 + i, 1).Value)
 NuTemp(i) = Val(Range(.Range("KVCell").Value).Cells(1 + i, 2).Value)
 If Nu(i) <= 0 Then
 MsgBox "Kinematic viscosity must be a postive real", , "Ordos 99"
 GoTo InvalidData
 End If
 i = i + 1
 Wend
 ' if no table found ...
 If i = 0 Then
 MsgBox "At least one value of kinematic viscosity must be specified", , "Ordos 99"
 GoTo InvalidData
 End If
 NoOfNuValues = i
 TerminalHead = Val(.Range("TerminalHead").Value)
 If TerminalHead <= 0 Then
 MsgBox "Terminal must be a postive real or zero", , "Ordos 99"
 GoTo InvalidData
 End If

Page 31 of 44

 For i = 0 To N - 1
 Temp(i) = T(i) ' initial approximation of product temperature
 Km(i) = Val(Range(.Range("KMPostCell").Value).Cells(1 + i, 1).Value)
 If Km(i) < 0 Then
 MsgBox "KM Posts must be postive reals or zero, index " & _
 Format(i, "####"), , "Ordos 99"
 GoTo InvalidData
 End If
 If i > 0 Then
 If Km(i) <= Km(i - 1) Then
 MsgBox "KM Posts must monotonously increase, index " & _
 Format(i, "####"), , "Ordos 99"
 GoTo InvalidData
 End If
 End If
 El(i) = Val(Range(.Range("ElevationCell").Value).Cells(1 + i, 1).Value)
 OD(i) = Val(Range(.Range("ODCell").Value).Cells(1 + i, 1).Value)
 If OD(i) <= 0 Then
 MsgBox "Overall diameters must be postive reals, index " & _
 Format(i, "####"), , "Ordos 99"
 GoTo InvalidData
 End If
 WT(i) = Val(Range(.Range("WTCell").Value).Cells(1 + i, 1).Value)
 If WT(i) <= 0 Then
 MsgBox "Wall thicknesses must be postive reals, index " & _
 Format(i, "####"), , "Ordos 99"
 GoTo InvalidData
 End If
 YS(i) = Val(Range(.Range("YSCell").Value).Cells(1 + i, 1).Value)
 If YS(i) <= 0 Then
 MsgBox "Yield strengths must be postive reals, index " & _
 Format(i, "####"), , "Ordos 99"
 GoTo InvalidData
 End If

 Roughness(i) = Val(Range(.Range("RoughnessCell").Value).Cells(1 + i, 1).Value)
 If Roughness(i) <= 0 Then
 MsgBox "Roughnesses must be postive reals, index " & _
 Format(i, "####"), , "Ordos 99"
 GoTo InvalidData
 End If

 T(i) = Val(Range(.Range("TemperatureCell").Value).Cells(1 + i, 1).Value)
 DesignFactor(i) = Val(Range(.Range("DesignFactorCell").Value).Cells(1 + i, 1).Value)
 If DesignFactor(i) <= 0 Then
 MsgBox "Design factor be a postive real below or equal 1", , "Ordos 99"
 GoTo InvalidData
 End If

 HeatTransferRate(i) = Val(Range(.Range("HTRCell").Value).Cells(1 + i, 1).Value)
 If HeatTransferRate(i) < 0 Then
 MsgBox "het transfer rates must be postive reals, index " & _
 Format(i, "####"), , "Ordos 99"
 GoTo InvalidData

Page 32 of 44

 End If
 If i Mod 15 = 0 Then Call ShowProgress("Loading data...", i, N - 1)
 Next i
 ProductHeatCapacity = Val(Range(.Range("HCCell").Value).Cells(1, 1).Value)
 Temp(0) = .Range("InitialTemperature").Value
 End With
 ProgressOff
 Exit Sub
InvalidData: MsgBox "Invalid parameter - check your input data", , "Ordos 99"
Call EraseData
ProgressOff
End Sub

Public Sub EraseData()
 N = 0
End Sub

Public Function DataLoaded() As Boolean
 DataLoaded = (N > 1)
End Function

Public Sub Calc_MaxOpHeadAndPressure()
Dim i As Integer
 Call Calc_ProductTemperature
 If Not DataLoaded Then MsgBox "No data": Exit Sub
 ProgressOn
 For i = 0 To N - 1
 MAOP(i) = 2 * (WT(i) / OD(i)) * YS(i) * gravity * (0.454 / (0.0254 * 0.0254)) *
DesignFactor(i)
 MAOH(i) = MAOP(i) / (Density(i) * gravity) + El(i)
 Application.Worksheets("DATA").Range("MAOP").Cells(1 + i, 1).Value = _
 MAOP(i)
 Application.Worksheets("DATA").Range("MAOPBARS").Cells(1 + i, 1).Value = _
 MAOP(i) / gravity / 10200
 Application.Worksheets("DATA").Range("MAOH").Cells(1 + i, 1).Value = _
 MAOH(i)
 Application.Worksheets("DATA").Range("GRAD").Cells(1 + i, 1).Value = _
 Gradient(i)
 If i Mod 20 = 0 Then _
 Call ShowProgress("Calculating MAOP...", i, N - 1)
 Next i
 Call ModifyPressurePlot
 Call ModifyHeadPlot
 Call ModifyGradientPlot
 Charts("HEAD_AND_EL").Activate
 ProgressOff
End Sub

Public Function CombinedHeatTransfer(ByVal i As Integer) As Double
Dim yield1 As Double
 yield1 = lambda(i) * ProductHeatCapacity * Density(i) * velocity(i) / 8
 CombinedHeatTransfer = 1 / (1 / yield1 + 1 / HeatTransferRate(i))
End Function

Page 33 of 44

Public Sub Calc_ProductTemperature()
Dim i As Integer
 If Not DataLoaded Then MsgBox "No data": Exit Sub
 ProgressOn
 Application.Worksheets("DATA").Range("TEMP").Cells(1, 1).Value = _
 Temp(0)
 For i = 1 To N
 Temp(i) = Temp(i - 1) + (4 * CombinedHeatTransfer(i - 1) / Diameter(i - 1) _
 * (T(i - 1) - Temp(i - 1)) / velocity(i - 1) + _
 Gradient(i - 1) * Density(i - 1) * gravity) * (Km(i) - Km(i - 1)) / (Density(i - 1) *
ProductHeatCapacity)
 Application.Worksheets("DATA").Range("TEMP").Cells(1 + i, 1).Value = _
 Temp(i)
 If i Mod 20 = 0 Then _
 Call ShowProgress("Calculating Temperature...", i, N - 1)
 Next i
 Call ModifyTemperaturePlot
 Charts("TEMPERATURE").Activate
 ProgressOff
End Sub

Public Sub InstallStations()
Dim i, j As Integer
Dim h As Double
 ProgressOn

 ' load station locations and delta head
 With Application.Worksheets("DATA")
 TerminalHead = Val(.Range("TerminalHead").Value)
 N = Val(.Range("NoOfKmPosts").Value)

 NoOfStations = .Range("NOOFSTATIONS").Cells(1, 1).Value
 For j = 0 To NoOfStations - 1
 StX(j) = .Range("STATIONS").Cells(1 + j, 1).Value
 DeltaH(j) = .Range("DELTAHEAD").Cells(1 + j, 1).Value
 Station(j) = .Range("STATIONTYPES").Cells(1 + j, 1).Value
 If j Mod 5 = 0 Then _
 Call ShowProgress("Loading station data...", j, N - 1)
 Next j
 End With
 ProgressOff
 ProgressOn
 i = N - 1: h = TerminalHead: j = 0
 Do While i >= 0
 Head(i) = h
 Application.Worksheets("DATA").Range("HEAD").Cells(1 + i, 1).Value = _
 h
 Application.Worksheets("DATA").Range("PRESSURE").Cells(1 + i, 1).Value = _
 (h - El(i)) * Density(i) / 10200
 i = i - 1
 If i < 0 Then Exit Do
 h = h + Gradient(i) * (Km(i + 1) - Km(i))
 If j < NoOfStations Then
 Do While Km(i) <= StX(j)

Page 34 of 44

 h = h - Station(j) * DeltaH(j)
 j = j + 1
 If j = NoOfStations Then Exit Do
 Loop
 End If
 If i Mod 20 = 0 Then _
 Call ShowProgress("Preparing plot data...", N - i, N - 1)
 Loop
 ProgressOff
 Call ModifyHeadPlot
 Call ModifyPressurePlot
 Call ModifyStationsPlot
 Charts("HEAD_AND_EL").Activate
End Sub

Public Sub UpgradeStations()
Dim i As Integer, j As Integer, x As Double, h As Double, Delta As Double
Dim k As Integer, upgrade As Integer
Dim old_h As Double, h1 As Double

 If Not DataLoaded Then MsgBox "No data": Exit Sub
 TerminalHead = Val(Worksheets("DATA").Range("TerminalHead").Value)
 N = Val(Worksheets("DATA").Range("NoOfKmPosts").Value)

 If TerminalHead < Profile(N - 1) Then _
 MsgBox "Destination head must be in excess of elevation", , _
 "Ordos 99": Exit Sub
 ProgressOn
 With Application.Worksheets("DATA")
 UpgradedNoOfStations = .Range("UPGRADENOOFSTATIONS").Cells(1, 1).Value
 For j = 0 To UpgradedNoOfStations - 1
 UpgradeStX(j) = .Range("UPGRADESTATIONSX").Cells(1 + j, 1).Value
 UpgradeStation(j) = .Range("UPGRADESTATIONTYPES").Cells(1 + j, 1).Value
 Call ShowProgress("Loading upgraded station data...", j + 1, UpgradedNoOfStations)
 Next j
 End With

 ProgressOff
 ProgressOn
 NoOfStations = 0: h = TerminalHead: i = N - 1: x = Km(N - 1)
 upgrade = 0
 ' x = latest studied node co-ordinate
 While i > 0
 i = i - 1
 h_old = h
 h = h + Gradient(i) * (x - Km(i))
 If Km(i) <= UpgradeStX(upgrade) And upgrade < UpgradedNoOfStations Then
 x = UpgradeStX(upgrade)
 h = h - Gradient(i) * (x - Km(i))
 upgrade = upgrade + 1
 If UpgradeStation(upgrade - 1) = 1 Then ' upgraded pump
 Delta = h
 GoTo AddPump
 Else ' upgraded regulator
 GoTo AddRegulator

Page 35 of 44

 End If
 ElseIf h <= Profile(i) Then ' run into ground - regulator site
 x = IntersectionOf(Km(i), Km(i + 1), Profile(i), Profile(i + 1), Km(i), x, h, h_old)

 ' equate h to just elevation of point x on the profile
 h = Profile(i) + (x - Km(i)) * (Profile(i + 1) - Profile(i)) / (Km(i + 1) - Km(i))
 ' add a reduction station
AddRegulator:
 StX(NoOfStations) = x: Station(NoOfStations) = -1

 j = HighPoint(x, h)

 If j = -1 Then MsgBox "Error High Point", , "Ordos 99": Exit Sub

 Delta = 0
 If j < i Then
 For k = j To i - 1
 Delta = Delta + (Km(k + 1) - Km(k)) * Gradient(k)
 Next k
 End If
 Delta = Delta + (x - Km(i)) * Gradient(i)

 ' profile too high
 'If Profile(El(j)) > Operating(j) Then
 ' MsgBox "Elevation at point " & Format(Km(j), "##.##") & " exceeds OP", , _
 ' "Ordos 99 - calculation aborted"
 ' ProgressOff
 ' Exit Sub
 'End If

 ' head reduction
 DeltaH(NoOfStations) = Profile(j) - Delta - h
 h = h + DeltaH(NoOfStations)
 NoOfStations = NoOfStations + 1
 h = h + 0.01 ' margin
 ElseIf h >= PumpOrOp(i) Then ' exceeded OP - pump site
 x = IntersectionOf(Km(i), Km(i + 1), _
 PumpOrOp(i), PumpOrOp(i + 1), _
 Km(i), x, h, h_old)

 Delta = PumpOrOp(i) + (x - Km(i)) * _
 (PumpOrOp(i + 1) - PumpOrOp(i)) / _
 (Km(i + 1) - Km(i))
AddPump:
 ' minimum suction pressure
 h = Profile(i) + (x - Km(i)) * _
 (Profile(i + 1) - Profile(i)) / _
 (Km(i + 1) - Km(i))
 h = Maximum(h, El(i) + MinPumpSuct / (Density(i) * gravity))
 StX(NoOfStations) = x

 j = HighPoint(x, h)

 If j <> -1 Then
 h1 = Profile(j)

Page 36 of 44

 If j < i Then
 For k = j To i - 1
 h1 = h1 - (Km(k + 1) - Km(k)) * Gradient(k)
 Next k
 End If
 h1 = h1 - (x - Km(i)) * Gradient(i)
 If h1 > h Then h = h1
 End If

 Delta = Delta - h

 ' add a pump station
 Station(NoOfStations) = 1
 DeltaH(NoOfStations) = Delta
 NoOfStations = NoOfStations + 1
 h = h + 0.01 ' margin
 Else ' carry on OK
 x = Km(i)
 End If
 If i Mod 2 = 0 Then _
 Call ShowProgress("Upgrading station layout...", N - i, N - 1)
 Wend
 ProgressOff
 ProgressOn
 ' save station locations and delta head
 With Application.Worksheets("DATA")
 .Range("NOOFSTATIONS").Cells(1, 1).Value = _
 NoOfStations
 For j = 0 To NoOfStations - 1
 .Range("STATIONS").Cells(1 + j, 1).Value = _
 StX(j)
 .Range("DELTAHEAD").Cells(1 + j, 1).Value = _
 DeltaH(j)
 .Range("STATIONTYPES").Cells(1 + j, 1).Value = _
 Station(j)
 If j Mod 5 = 0 Then _
 Call ShowProgress("Storing station data...", j, N - 1)
 Next j
 End With

 ProgressOff
 Call InstallStations
 End Sub

Public Sub LocateStations()
Dim i As Integer, j As Integer, x As Double, h As Double, Delta As Double
Dim k As Integer
Dim old_h As Double

 If Not DataLoaded Then MsgBox "No data": Exit Sub
 Calc_MaxOpHeadAndPressure
 TerminalHead = Val(Worksheets("DATA").Range("TerminalHead").Value)
 N = Val(Worksheets("DATA").Range("NoOfKmPosts").Value)

 If TerminalHead < Profile(N - 1) Then _

Page 37 of 44

 MsgBox "Destination head must be in excess of elevation", , _
 "Ordos 99": Exit Sub

 ProgressOn
 NoOfStations = 0: h = TerminalHead: i = N - 1: x = Km(N - 1)
 ' x = latest installed station co-ordinate
 While i > 0
 i = i - 1
 h_old = h
 h = h + Gradient(i) * (x - Km(i))
 If h <= Profile(i) Then ' run into ground - regulator site
 x = IntersectionOf(Km(i), Km(i + 1), Profile(i), Profile(i + 1), Km(i), x, h, h_old)
 ' equate h to just elevation of point x on the profile
 h = Profile(i) + (x - Km(i)) * (Profile(i + 1) - Profile(i)) / (Km(i + 1) - Km(i))
 ' add a reduction station
 StX(NoOfStations) = x: Station(NoOfStations) = -1

 j = HighPoint(x, h)

 If j = -1 Then MsgBox "Error High Point", , "Ordos 99": Exit Sub

 Delta = 0
 If j < i Then
 For k = j To i - 1
 Delta = Delta + (Km(k + 1) - Km(k)) * Gradient(k)
 Next k
 End If
 Delta = Delta + (x - Km(i)) * Gradient(i)

 ' profile too high
 'If Profile(El(j)) > Operating(j) Then
 ' MsgBox "Elevation at point " & Format(Km(j), "##.##") & " exceeds OP", , _
 ' "Ordos 99 - calculation aborted"
 ' ProgressOff
 ' Exit Sub
 'End If

 ' head reduction
 DeltaH(NoOfStations) = Profile(j) - Delta - h
 NoOfStations = NoOfStations + 1
 i = j
 h = Profile(j) + 0.01
 x = Km(j)
 ElseIf h >= PumpOrOp(i) Then ' exceeded OP - pump site
 x = IntersectionOf(Km(i), Km(i + 1), _
 PumpOrOp(i), PumpOrOp(i + 1), _
 Km(i), x, h, h_old)

 ' minimum suction pressure
 h = Profile(i) + (x - Km(i)) * _
 (Profile(i + 1) - Profile(i)) / _
 (Km(i + 1) - Km(i))
 h = Maximum(h, El(i) + MinPumpSuct / (Density(i) * gravity))
 Delta = PumpOrOp(i) + (x - Km(i)) * _
 (PumpOrOp(i + 1) - PumpOrOp(i)) / _

Page 38 of 44

 (Km(i + 1) - Km(i)) - h
 StX(NoOfStations) = x

 j = HighPoint(x, h)

 If j <> -1 Then
 h = Profile(j)
 If j < i Then
 For k = j To i - 1
 h = h - (Km(k + 1) - Km(k)) * Gradient(k)
 Next k
 End If
 h = h - (x - Km(i)) * Gradient(i)
 Delta = PumpOrOp(i) + (x - Km(i)) * _
 (PumpOrOp(i + 1) - PumpOrOp(i)) / _
 (Km(i + 1) - Km(i)) - h
 End If
 ' add a pump station
 Station(NoOfStations) = 1
 DeltaH(NoOfStations) = Delta
 NoOfStations = NoOfStations + 1
 h = h + 0.01 'extra margin
 Else ' carry on OK
 x = Km(i)
 End If
 If i Mod 15 = 0 Then _
 Call ShowProgress("Locating stations...", N - i, N - 1)
 Wend
 ProgressOff
 ProgressOn
 ' save station locations and delta head
 With Application.Worksheets("DATA")
 .Range("NOOFSTATIONS").Cells(1, 1).Value = _
 NoOfStations
 For j = 0 To NoOfStations - 1
 .Range("STATIONS").Cells(1 + j, 1).Value = _
 StX(j)
 .Range("DELTAHEAD").Cells(1 + j, 1).Value = _
 DeltaH(j)
 .Range("STATIONTYPES").Cells(1 + j, 1).Value = _
 Station(j)
 If j Mod 5 = 0 Then _
 Call ShowProgress("Storing station data...", j, N - 1)
 Next j
 End With

 ProgressOff
 Call InstallStations
 End Sub

Public Function Profile(ByVal i As Integer) As Double
 Profile = El(i) + MinimumPressure / (Density(i) * gravity)
End Function

Page 39 of 44

Public Function Operating(ByVal i As Integer) As Double
 Operating = El(i) + OpByMaop * MAOP(i) / (Density(i) * gravity)
End Function

Public Function Diameter(ByVal i As Integer) As Double
 Diameter = OD(i) - 2 * WT(i)
End Function

Public Function velocity(ByVal i As Integer) As Double
 velocity = 4 * Q / (3.1415 * Diameter(i) * Diameter(i))
End Function

Public Function viscosity(ByVal i As Integer) As Double
Dim j As Integer
 If NoOfNuValues = 1 Then
 viscosity = Nu(0)
 Else
 j = 0
 Do While Temp(i) > NuTemp(j)
 j = j + 1
 If j = NoOfNuValues Then Exit Do
 Loop
 If j = NoOfNuValues Then
 viscosity = Nu(j - 1) + (Nu(j - 1) - Nu(j - 2)) * (Temp(i) - NuTemp(j - 1)) / (NuTemp(j - 1)
- NuTemp(j - 2))
 ElseIf j = 0 Then
 viscosity = Nu(j) + (Nu(j + 1) - Nu(j)) * (Temp(i) - NuTemp(j)) / (NuTemp(j + 1) -
NuTemp(j))
 Else
 j = j - 1
 viscosity = Nu(j) + (Nu(j + 1) - Nu(j)) * (Temp(i) - NuTemp(j)) / (NuTemp(j + 1) -
NuTemp(j))
 End If
 End If
End Function

Public Function Density(ByVal i As Integer) As Double
Dim j As Integer
 If NoOfRoValues = 1 Then
 Density = Ro(0)
 Else
 j = 0
 Do While Temp(i) > RoTemp(j)
 j = j + 1
 If j = NoOfRoValues Then Exit Do
 Loop
 If j = NoOfRoValues Then
 Density = Ro(j - 1) + (Ro(j - 1) - Ro(j - 2)) * (Temp(i) - RoTemp(j - 1)) / (RoTemp(j - 1) -
RoTemp(j - 2))
 ElseIf j = 0 Then
 Density = Ro(j) + (Ro(j + 1) - Ro(j)) * (Temp(i) - RoTemp(j)) / (RoTemp(j + 1) -
RoTemp(j))
 Else
 j = j - 1

Page 40 of 44

 Density = Ro(j) + (Ro(j + 1) - Ro(j)) * (Temp(i) - RoTemp(j)) / (RoTemp(j + 1) -
RoTemp(j))
 End If
 End If
End Function

Public Function Re(ByVal i As Integer) As Double
 Re = velocity(i) * Diameter(i) / viscosity(i)
End Function

Public Function Sqrt(ByVal x As Double) As Double
 Sqrt = Exp(0.5 * Application.Ln(Abs(x)))
End Function

Public Function F_lambda(ByVal s As Double, ByVal i As Integer) As Double
F_lambda = Application.Ln(Roughness(i) / (3.7 * Diameter(i)) + 2.51 * Abs(s) / Re(i)) + _
 Application.Ln(10) * s / 2
End Function

Public Function dF_lambda_ds(ByVal s As Double, ByVal i As Integer) As Double
 dF_lambda_ds = 2.51 / (Roughness(i) * Re(i) / (3.7 * Diameter(i)) + 2.51 * Abs(s)) + _
 Application.Ln(10) / 2
End Function

Public Function lambda(ByVal i As Integer) As Double
Dim s As Double, j As Integer
' lambda = 0.3164 / Exp(0.25 * Application.Ln(Re(i)))
' lambda = 0.0096 + 5.7 * Sqrt(Roughness(i) _
' / Diameter(i)) + 1.7 * Sqrt(1 / Re(i))
 lambda = 0.11 * Exp(0.2 * Application.Ln(58 / Re(i) + 2 * Roughness(i) / Diameter(i)))
 s = 1 / Sqrt(lambda)
 For j = 1 To 5
 s = s - F_lambda(s, i) / dF_lambda_ds(s, i)
 Next j
 lambda = 1 / (s * s)
End Function

Public Function Gradient(ByVal i As Integer) As Double
 Gradient = lambda(i) * (velocity(i) * velocity(i)) / (2 * Diameter(i) * gravity)
End Function

Public Function IntersectionOf(ByVal x11 As Double, ByVal x12 As Double, _
 ByVal y11 As Double, ByVal y12 As Double, _
 ByVal x21 As Double, ByVal x22 As Double, _
 ByVal y21 As Double, ByVal y22 As Double) As Double

Dim k1 As Double, k2 As Double

 If x11 = x12 Or x21 = x22 Then

 If x21 <> x22 Then
 IntersectionOf = x11
 ElseIf x11 <> x12 Then

Page 41 of 44

 IntersectionOf = x21
 ElseIf x12 <> x21 Then
 IntersectionOf = Infinity
 Else
 Intersectof = x11
 End If
 Exit Function
 End If

 k1 = (y12 - y11) / (x12 - x11)
 k2 = (y22 - y21) / (x22 - x21)

 If k1 = k2 Then
 IntersectionOf = Infinity
 Else
 IntersectionOf = (x11 * k1 - x21 * k2 + y21 - y11) / (k1 - k2)
 End If

End Function

Public Function HighPoint(ByVal x As Double, ByVal y As Double) As Integer
Dim i As Integer, j As Integer, w As Double, hp As Integer, max As Double
 max = 0: i = 0
 Do While Km(i) < x
 i = i + 1
 If i = N Then HighPoint = -1: Exit Function
 Loop
 i = i - 1
 If i = -1 Then HighPoint = -1: Exit Function

 For j = 0 To i
 w = Profile(j)
 For k = j To i - 1
 If w > Operating(k) Then
 w = -Infinity: Exit For
 ElseIf w < Profile(k) Then
 w = -Infinity: Exit For
 Else
 w = w - Gradient(k) * (Km(k + 1) - Km(k))
 End If
 Next k
 w = w - Gradient(i) * (x - Km(i))
 If w > max Then
 max = w
 hp = j
 End If
 Next j

 If max < y Then HighPoint = -1 Else HighPoint = hp

End Function

Public Function Minimum(ByVal a As Double, ByVal b As Double) As Double
 If a < b Then Minimum = a Else Minimum = b

Page 42 of 44

End Function

Public Function Maximum(ByVal a As Double, ByVal b As Double) As Double
 If a > b Then Maximum = a Else Maximum = b
End Function

Public Function PumpOrOp(ByVal i As Integer) As Double
 PumpOrOp = Minimum(Operating(i), El(i) + MaxPumpDisch / (Density(i) * gravity))
End Function

Page 43 of 44

References

[M] M. A. Maharramov. Steady-State and Transient Flows in Hydrocarbon Pipelines. London,
O.R.E.M. 2002, Eng. Memo No 29789.

[S] L. I. Sedov. Mechanics of Continua. Moscow, NAUKA, 1973, v I, II.

[DH] J. W. Daily, D.R.F. Harleman. Fluid Dynamics. Addison-Wesley, 1966.

Page 44 of 44

	Baku State University
	Table of Contents
	Introduction
	Chapter I. Mechanics of Flow in Hydrocarbon Pipelines
	1.	Governing Equations
	2.	Viscous Liquid

	Chapter II. Mathematical Model of a Steady-state Flow through a Steel Pipeline
	3.	Pipeline
	4.	Model

	Chapter III. Flow Simulation
	5.	Interfaces and Output
	6.	Location of PS and PRS

	Appendix A. Source Code of the Data Module
	Appendix B. Source Code of the Computations Module
	References

