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SUMMARY
Current wave-equation tomography techniques based on migrated im-
age differences, such as those observed in 4D data sets, use the image
difference as a measure of velocity misfit. Computation of the objec-
tive function gradient is accomplished by the adjoint application of the
derivative of the imaging operator to this image difference. In all tech-
niques developed to date this process is carried out by computing the
gradient over a relatively large number of depth steps, and then opti-
mizing the objective function globally over the entire range. In this
abstract, we extend this concept to compute the gradient and objective
function locally, within several or even one depth step at a time. In
principle, for objective functions that are sharply peaked around the
global minimum, and have other minima elsewhere, this localization
should reduce the possibility of falling into a false minimum, and sig-
nificantly reduce the number of iterations required in the optimization.
In addition, since the velocity is optimized in depth as the extrapolation
proceeds, the method is significantly more immune to cycle-skipping
at higher frequencies than global methods.

INTRODUCTION

One key aspect of reservoir monitoring is the successful tracking of
hydrocarbon movement as the reservoir is depleted. In order to ac-
complish this, most current methods rely on the conversion of picked
time shifts between migrated sections to local impedence changes as
well as reflector movement. While quite successful, this technique re-
lies on a significant amount of interpretation and quality control in the
conversion process. More recently, however, wave-equation image-
difference tomography has been proposed as a more automatic tech-
nique to recover velocity perturbations associated with reservoir de-
pletion (Albertin et al, 2006).

Wave-equation image-difference tomography is based on an optimiza-
tion that tries to minimize the difference between migrated images. In
its simplest form, the method relies on a relation between an image
perturbation and the slowness c according to

δ I =
δ I
δc

δc. (1)

Solving this equation for δc in the adjoint sense gives an update to the
slowness according to

δc∗ =
(

δ I
δc

)∗
δ I (2)

Recovery of the slowness perturbation associated with the image dif-
ference is then accomplished using the following steps. First, a down-
ward extrapolation is done on both data sets to obtain an image dif-
ference, using one of the data sets as a reference. Second, an upward
continuation is done in which the image difference is correlated against
the downward-extrapolated reference field to recover the slowness per-
turbation. Since the procedure does not use the exact inverse to δ I

δc , an
iterative optimization is used to converge to a final velocity update;
the objective function corresponding to the square of the norm |δ I|2is
checked at each iteration to make sure the image difference is actually
decreasing, and the new model is used to obtain a new set of images

and a new image difference. Note that at each iteration of the tomogra-
phy the upward and downward extrapolations are done over the entire
model.

This procedure is effective in recovering velocity changes associated
with reservoir depletion to high resolution, but it is a nonlinear inver-
sion, and hence the issue of local minima becomes significant when
solving for the update. Unlike wave-equation tomography based on
differential semblance of migrated gathers (Shen et al, 2003), a tomog-
raphy based on a direct image-difference has an objective function that
is much steeper near the global minimum. In addition, it is easy to see
that if the velocity perturbation is sufficiently large, and spread over a
large enough depth window, the difference in the images will be larger
than the dominant wavelength in the image, and will cycle-skip. Re-
covery of the proper velocity in such cases will become quite difficult.

To circumvent this issue, one possible method is to slowly increase the
frequency content of the image, and to do the tomography in stages,
from lower frequency to higher frequencies. Such a method would be
directly analogous to methods used in waveform inversion to avoid cy-
cle skipping (Sirgue and Pratt, 2004). The inversion is initially carried
out at a sufficiently low frequency that the image difference does not
cycle skip. Further iterations at successively higher and higher fre-
quencies use the model obtained in the previous inversion as a starting
model. Such a technique has been used successfully in both wave-
form inversion and wave-equation tomography when objective func-
tions with narrow basins of attraction are utilized.

In this abstract we employ a different technique to mitigate the ef-
fects of cycle-skipping, which makes particular use of the fact that the
inversions we are doing utilize one-way depth-extrapolation to propa-
gate the wavefield. The central idea goes back to the concept of layer-
stripping in standard tomography. Layer-stripping in standard reflec-
tion tomography is a technique where the velocity update is initially
localized to the top-most layer of a model. This significantly reduces
the degrees of freedom in the backprojection, thereby stabilizing it.
The velocity in this layer is then held fixed while a new tomography is
done in the next lower layer. This process is continued until the end of
the model is reached. The primary drawback to such a scheme occurs
if velocities are not sufficiently corrected in early layers. In this case,
significant velocity error can build up as the layer stripping proceeds.

It is simple to extend the idea of layer-stripping to the wave-equation
context as follows. Instead of downward and upward propagating the
wavefields over the entire model to obtain the image difference, gradi-
ent, and new objective-function value, we downward continue only a
few steps in the model. We then stop and get a gradient in this small
depth window, and then compute an objective function value over this
small window as well. The procedure is then iterated in the small
depth window to minimize the objective function before proceeding to
the next depth window. The starting model for the next depth window
is taken to be velocity obtained in the very last depth step of the pre-
vious window, and the entire procedure is then repeated for this new
window. The size of this depth window can be reduced all the way to
a single depth step, if so desired.

There are several advantages to such a scheme. First, by reducing the
depth window over which the optimization is carried out, we signifi-
cantly reduce the number of degrees of freedom in the backprojection.
This leads to an objective function with far fewer minima, and rapid
convergence. Second, by employing the velocity from the previous
depth window as a starting model for the new window, the velocity
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difference between the incorrect starting model and the correct model
never becomes that large. In this way, depth errors between the two
images never become large, and the method thereby eliminates to a
large extent the possibility of cycle skipping.

A DESCRIPTION OF THE METHOD

Let p(x,h,ω)denote the acquired wavefield in the frequency domain
in midpoint-offset coordinates. Let En = ei∆zφn be the downward ex-
trapolation operator so that pn+1 = En pn gives the wavefield at the
depth step n+1 from that at n. Suppose also that p0 denotes a second
reference wavefield that we are trying to match in the seismic history.
Let I denote the migated image corresponding to p, and let Γ denote
summation over frequency, with the offset set to zero so that I = Γp.
Assuming that the velocity has already been reconstructed down to
the depth layer n, we take as a misfit function in the depth window
k = n + 1 . . .n + L the sum of the squares of the differences between
the images I− I0 according to

J(c) =
1
2

n+L

∑
k=n+1

(
Γ

(
pk − pk,0

)
,Γ

(
pk − pk,0

))
x . (3)

or

J(c) =
1
2

n+L

∑
k=n+1

(
ΓEk

n(c)(pn − pn,0) ,ΓEk
n(c)(pn − pn,0)

)
x
. (4)

Here L is the size of the depth window, Ek
n(c) = EnEn+1 . . .Ek is the

extrapolator from depth layer n down to depth layer k, (a,b)x is an
inner product that means multiply b by the complex conjugate of a
pointwise and sum over midpoint. Differentiating this misfit function
with respect to slowness leads to

δJ
δc

=
n+L

∑
k=n+1

(
Γ

δEk
n(c)

δc
(pn − pn,0) ,ΓEk

n(c)(pn − pn,0)
)

x
. (5)

Up to this point, the treatment generally follows that of Shen et al
(2003) except for the use of a narrow depth-window L, an objective
function based on an image difference instead of differential sem-
blance and expressing the objective function gradient via that of the
extrapolator. The procedure for computing the velocity update glob-
ally – i.e., across the entire seismic section – is then the following
steps:

1. Downward continue over the section to obtain the images I
and I0 and subtract these to obtain the residual field δ I = Γδ p.

2. Compute the value of the objective function in eqn.(3) with
L equal to the depth of the seimic section, setting n = 0, and
compare with its previous value. Invoke line search if neces-
sary and repeat step (1).

3. Compute the gradient according to eqn. 4 with L equal to the
depth of the seimic section and n = 0. Multiply this gradient
by a suitable scalar (or use a suitable nonlinear solver) to up-
date the model, and then repeat the procedure, proceeding to
step 1.

In our new method, we replace the global objective function J(c) with
the local function at a single depth step (i.e., setting L = 1)

Jn(c) =
1
2

(Γ(pn+1 − pn+1,0) ,Γ(pn+1 − pn+1,0))x . (6)

The gradient is also computed at a single depth step according to

δJn

δc
=

(
Γ

δEn+1
n (c)
δc

(pn − pn,0) ,ΓEn+1
n (c)(pn − pn,0)

)
x
. (7)

The new procedure is as follows:

1. Downward continue a single depth step to obtain I and I0 and
subtract the images at this depth step to obtain a residual field.

2. Compute the value of the objective function via eqn. 6 for this
single depth step. Invoke line search if necessary and repeat
step (1).

3. Compute the gradient for a single depth step according to eqn.
7. Multiply this gradient by a suitable scalar (or use a suitable
nonlinear solver) to update the model, and then repeat the pro-
cedure, proceeding to step 1.

4. After the velocity has been optimized for this step, move to
the next depth step. Use the velocity from the previous step
as a starting model for this new step.

This algorithm can be suitably generalized to do a number of depth
steps in each optimization window according to eqns 3 – 5. The pri-
mary advantage of this scheme is that the images are matched within
each depth window as the optimization proceeds, so that the number
of degrees of freedom in the optimization is relatively small, and the
chance of cycle-skipping is significantly reduced.

AN EXAMPLE OF THE METHOD

The method described above was tested on the Marmousi model data
set. The goal of the optimization was to recover the Marmousi velocity
model from an image difference. Since two direct data sets were not
available, the method was tested by migrating with the correct model,
and with an incorrect model, and using the resulting difference as a
residual field for the velocity backprojection. Although such an op-
timization could be done globally, substantial difficulties would nor-
mally occur if the two velocity models used to create the two images
are signficantly different, because the two resulting images would be
significantly out of phase at nominal seismic frequencies by the bot-
tom of the section. We instead used the method of the previous section
to recover the velocity. At each depth step, the starting velocity at
that step is initially taken to be the velocity from the preceeding step.
The starting velocity at the first step was taken to be constant. The
downward continued wavefield at the new step was subtracted from
the image with the correct model at that depth step to produce a resid-
ual field, which was then used to produce a gradient to the objective
function. A narrow-aperture explicit extrapolator was used in eqn. 7,
making the gradient evaluation especially computationally efficient, as
the coefficients of the extrapolator gradient had been precomputed. A
nonlinear LBFGS solver was then used to update the velocity. The
optimization was typically run for two to three steps before moving to
the next depth step.
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The results of this algorithm are shown in Figures 1 and 2. Figure 1
shows the true Marmousi velocity model, while Figure 2 shows the
recovered model. Overall, the model has been recovered quite well,
except for several areas where noticable ’streaking’ occurs. In these
areas, the optimization did not properly recover the velocity because
the difference in images was not sufficient to produce a strong gra-
dient. Since the starting velocity at each step was taken as that in
the previous step, velocity errors propagate downward, and appear as
streaks. This is entirely analogous to the phenomenon of velocity error
propagation when using layer stripping in standard tomography. Any
unresolved velocity errors that are not properly accounted for shallow
in the section will produce errors deeper down.

SUMMARY

In conclusion, we have presented a method for velocity recovery from
direct image differences. The method is directly applicable to 4D data
sets where image differences from reservoir depletion are available.
The primary advantage of the method is that it optimizes and recovers
the velocity locally in one or several depth steps at a time. The result-
ing optimization has far fewer degrees of freedom to solve for in each
optimization window, and because image differences are solved for
locally, the possiblilty of cycle skipping in the inversion is greatly re-
duced. Initial results on the Marmousi data set indicate that the method
is quite effective in recovering velocities even when the model is quite
complex.
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Figure 1: The exact Marmousi velocity model.

Figure 2: The reconstructed model using localized image-difference
tomography. In general the model has been very well reconstructed
except for some noticable streaking in the model.
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