
Rev 1. Quasi-Newton L-BFGS Minimisation

Quasi-Newton Minimisation with Limited Storage

Introduction.

Our objective is to find the global minimum of a twice continuously
differentiable function of many variables F x =F x1 , , xN  where N can be
arbitrarily large.

The classical Newton Minimisation Method delivers a fast-converging
(superlinear) algorithm for solving this problem when a good initial
approximation is known.

Following is a formal description of the Newton Minimisation algorithm for
the above problem:

Let x0=x01 , , x0
N  be an initial approximation of the point where F takes its

global minimum.
Let k=1 be the iteration counter, ε0 - termination flag.

Do loop:

Evaluate the gradient Gk−1= ∂F∂ x1
, , ∂F

∂xN  at x=xk−1 .

Evaluate the Hessian matrix H=∥
∂2F

∂ xi∂ x j∥∣x=xk−1
 at x=xk−1 .

Define a direction in which the next iteration will be searched:

pk=−H−1Gk−1 . (1)

Minimise the univariate function

Φ α  :=F xk−1αpk  ,
a=αmin:Φ αmin=min

α
Φ α  . (2)

Evaluate the next approximation to solution:

xk=xk−1sk , sk=αminpk

Terminate loop if ∣F  xk ∣εmax 1,∥xk∥ , otherwise resume loop with k
= k + 1.
End of loop

Page 1 of 9

Rev 1. Quasi-Newton L-BFGS Minimisation

Application of this algorithm runs into difficulties when the Hessian matrix
cannot be easily obtained numerically.
Two problems are posed in connection with practical application of the
Newton Method:

- Can the inverse of the Hessian matrix in (1) be numerically
approximated using the output of previous iterations rather
than calculated directly?

- What univariate minimisation (i.e. line search) can best be used
to minimise function (2) so as to achieve the fastest global
convergence?

1. Limited Memory quasi-Newton Minimisation Method.

A number of algorithms exist (collectively known as quasi-Newton methods)
that address this problem. The main idea of the quasi-Newton methods is to
use the search directions sk and gradients Gk returned from previous
iterations to estimate the value of the Hessian matrix.

All of the quasi-Newton methods are based on the following observation: If H
is the Hessian matrix of F at x=xk−1 , sk−i=xk−i−xk−i−1 are the increments
of x for previous iterations, yk−i=Gk−i−Gk−i−1 are increments of the
gradient, and the index i=1, ,M identifies the M previous steps of the
algorithm, then:

yk−i=Gk−i−Gk−i−1=∇ F∣x=xk−i
−∇ F∣x=x

k−i−1
¿H xk−i−xk−i−1=Hsk−i

sk−i≈H−1 yk−i , (3)

assuming that sk−i=xk−i−xk−i−1 or H are “sufficiently small”.

In any quasi-Newton method, the Hessian matrix is approximated with a
symmetric positive-definite matrix that satisfies (3) for i=1,…,M, where M is
much smaller than N (if M = N then H can be restored uniquely from (3)).
When N is very large and it is either impossible or impractical to store N2
elements of the approximate Hessian matrix, any of the “limited storage”
quasi-Newton methods can be used that approximate the inverse Hessian
matrix “on the fly” along with evaluating the next search direction through
formula (1).

Page 2 of 9

Rev 1. Quasi-Newton L-BFGS Minimisation

Assuming that Hk is an approximation to the Hessian obtained at the kth
step, let us chose a symmetric matrix Hk1 that satisfies (3) for i=0 exactly:

Hk1sk=yk (4)

First, we pick a symmetric rank-one update

Hk1  i
i
= Hk  i

i
u iv j . (5)

Substituting (5) into (4) we can transform (5) into

Hk1 i
i
= Hk  i

i


1
〈v , sk 〉

yk−Hk sk 
iv j (6)

assuming that v is not orthogonal to sk . The requirement of symmetry for
(6) implies that v be chosen as v=yk−Hk sk . The latter is assumed to be
non-zero, as otherwise Hk would have already satisfied (4) in place of Hk1
so no correction would have been required. Finally, we arrive at the following
symmetric rank-one Hessian update:

Hk1  j
i
=Hk  j

i


1
〈 yk−Hk sk , sk〉

yk−Hk sk 
i
 yk−Hk sk  j (7)

Formula (7) exhausts all possible symmetric rank-one updates. In order to
obtain alternative Hessian correction formulae, we will need to look into
updates of rank two and above.

Let us revert to the rank-one update (6), this time allowing v to be arbitrary
(but not orthogonal to sk), and symmetrise the resultant operator Hk1 :

Hk1
2  j

i
=Hk1Hk1

T  j
i
/2 . (8)

The operator Hk1
2 , although symmetric, does not satisfy (4) so long as v is

arbitrary. However, we can apply formulae (6) and (8) iteratively:

 Hk1
n i

i
=Hk1

n i
i

1
〈v ,sk〉

yk−Hk1
n sk 

i
v j

Hk1
n1  j

i
= Hk1

n  Hk1
nT  j

i
/2,

n=3,4,

(9)

Page 3 of 9

Rev 1. Quasi-Newton L-BFGS Minimisation

Passing n to limit in (9) we can see that the limit Hk1= lim
n∞

Hk1
n

 exists,

satisfies (4), is symmetric and given by the following formula:

Hk1  j
i
=Hk  j

i

1
〈v ,sk〉

  yk−Hk sk 
iv jv i yk−Hk sk  j −

−
〈yk−Hk sk , sk 〉

〈v , sk 〉
2

v iv j

(10)

If v is taken as yk in 10 (which is possible to do as long as the Hessian is
positive defined; indeed 〈sk , yk 〉=〈sk ,Hk1sk〉0) we get the so-called
Davidon-Fletcher-Powell (DFP) update:

Hk1  j
i
=Hk  j

i
−
1
〈sk , Hk sk 〉

Hk sk 
i Hk

T sk  j
1
〈yk , sk〉

yk 
i
yk  j

〈sk ,Hk sk〉 wk 
i
wk  j

(11)

where

wk 
i
=

1
〈 yk , sk〉

yk 
i
−

1
〈sk , Hk sk 〉

Hk sk 
i
. (12)

Vector (12) is orthogonal to sk hence any multiple of the rank-one matrix

wk 
i
wk  j can be added to Hk1 without affecting the symmetry and

condition (4).

While adding such a matrix to (11) leads to a family of parameterised updates,

the method based on using (11) with the multiple of wk 
i
wk  j term

altogether dropped is believed to be the most efficient one. Thus, we arrive at
the following Broyden-Fletcher-Goldfarb-Shanno (BFGS) update:

Hk1  j
i
=Hk  j

i
−

1
〈sk , Hk sk〉

Hk sk 
i Hk

T sk  j
1

〈 yk ,sk〉
yk 

i
yk  j . (13)

Before we can apply (13) in a quasi-Newton minimisation for calculating the
search direction using formula (1), we need to invert the matrix Hk1 . In the
event we use only one-step BFGS update and Hk= I is the identity matrix, the
formula (13) will be transformed into

Page 4 of 9

Rev 1. Quasi-Newton L-BFGS Minimisation

Hk1  j
i
=δ j

i−
1

〈sk ,sk〉
sk 

i
sk  j

1
〈yk , sk〉

 yk 
i
 yk  j . (14)

We can show by direct substitution that the inverse of matrix (14) is given by

δm
j −

yk 
j
sk m

〈yk , sk〉


sk 
j
sk m

〈 yk , sk 〉
−

sk 
j
 yk m

〈 yk ,sk〉


sk 
j
sk m〈 yk , yk〉

〈yk , sk〉
2

. (15)

Indeed, the product of matrices (14) and (15) is

{δ j
i
−

sk 
i
sk  j

〈sk , sk 〉


yk 
i
yk  j

〈 yk ,sk〉 }×¿

¿×{δmj − yk 
j
sk m

〈yk , sk〉


sk 
j
sk m

〈 yk , sk 〉
−

sk 
j
yk m

〈yk ,sk〉


sk 
j
sk m〈 yk , yk〉

〈 yk , sk 〉
2 }=

¿δm
i −

 yk 
i
sk m

〈 yk , sk 〉


sk 
i
sk m

〈 yk , sk 〉
−

sk 
i
 yk m

〈 yk , sk 〉


sk 
i
sk m 〈 yk , yk 〉

〈 yk , sk 〉
2 −

−
sk 

i
sk m

〈sk , sk〉


yk 
i
yk m

〈yk , sk〉


sk 
i
sk m〈 yk ,sk〉

〈sk ,sk〉 〈 yk ,sk〉
−

sk 
i
sk m〈 sk ,sk〉

〈 sk ,sk〉〈 yk ,sk〉



sk 

i
yk m〈sk ,sk〉

〈sk , sk〉 〈yk ,sk〉
−

sk 
i
sk m〈 sk ,sk〉〈 yk , yk〉

〈 sk ,sk〉〈 yk ,sk〉
2 −

 yk 
i
sk m 〈 yk , yk〉

〈 yk , sk〉
2 


yk 

i
sk m〈yk , sk〉

〈yk , sk〉
2

−
 yk 

i
 yk m〈 yk ,sk〉

〈 yk ,sk〉
2


 yk 

i
sk m〈 yk ,sk〉 〈yk , yk〉

〈 yk ,sk〉
3

=

¿δm
i

- the identity matrix.

Using operator (15) in formula (1) we get the so-called limited-memory BFGS
method (L-BFGS) that uses the output of only one previous iteration to
approximate the inverse Hessian matrix. In the context of formula (1), the
application of operator (15) will result in the following formula (we introduce
an intermediate approximation pk

0  to the new search direction pk):

Page 5 of 9

Rev 1. Quasi-Newton L-BFGS Minimisation

pk
0 :=−Gk−1

pk :=pk
0
−
〈 sk−1,pk

0〉

〈 yk−1,sk−1〉
yk−1

〈sk−1,pk
0〉

〈 yk−1,sk−1〉
sk−1−

〈 yk−1,pk
0〉

〈 yk−1,sk−1〉
sk−1


〈sk−1, pk

0
〉 〈yk−1, yk−1,〉

〈yk−1,sk−1〉
2

sk−1.

(16)

We can eliminate the last term in (16) by introducing another intermediate
approximation pk

1 :

pk
0 :=−Gk−1 , (17)

pk
1 :=pk

0
−

〈sk−1,pk
0〉

〈yk−1,sk−1〉
yk−1 , (18)

pk :=pk
1[〈sk−1,pk

0
〉

〈 yk−1,sk−1〉
−

〈yk−1,pk
1
〉

〈 yk−1,sk−1〉]sk−1 . (19)

Note that pk is calculated in (19) from both pk
0 and pk

1 . Equivalence of
(17-19) to (16) can be demonstrated by direct substitution.

If we re-write (17-19) in the operator form, we obtain

pk
0 :=−IGk−1 (20)

pk
1 := IAk−1 pk

0 , Ak−1=∥a j
i∥=∥−

yk−1
i sk−1

q δqj
〈 yk−1,sk−1〉

∥ (21)

pk := IAk−1
T ,pk

1Bk−1 pk
0 , Bk−1=∥b j

i∥=∥
sk−1
i sk−1

q δqj
〈yk−1,sk−1〉

∥,

Bk−1
T =Bk−1 .

(22)

The identity matrix I in (20) can be replaced with an approximate inverse
Hessian. Formula (3) suggests that

D=
〈yk−1, sk−1〉

〈yk−1, yk−1〉
I (23)

 can be used as the initial diagonal approximation for the inverse Hessian
matrix.

Now, once the one-step L-BFGS update has been represented in an operator
form, we can adapt it to perform multi-step Hessian updates. If the values

Page 6 of 9

Rev 1. Quasi-Newton L-BFGS Minimisation

sk−i and yk−i=Gk−i−Gk−i−1 for M previous steps are known, then (21-22)
can be used to make M iterative “corrections” of the inverse Hessian matrix
(and hence the new search direction) as follows:

pk
0 :=−IGk−1

pk
0,0 :=pk

0

pk
0, i :=∏

j=1

i

 IAk− j pk
0 , i=1,M ,

pk
0,M1=Dpk

0,M ,

pk
1, i := IAk−i

T pk1, i1Bk−i pk
0, i−1 , i=M,,1,

pk :=pk
1,1.

(24)

Note that operators (21) and (22) – i.e., iterations (18) and (19) – are applied
in a “stacking” FILO order: (18) are applied in the direct order while (19), in
the reverse order.

Alternatively, the above process can be defined as a recursive application of
“corrections” contributed by each of the M previous iterations to the
approximate inverse Hessian matrix as follows.

Let Hk
i denote the approximation to the inverse Hessian matrix H obtained

using information from i steps k-M+i-1,…,k-M. There holds then the following
recurrent formula:

Hk
0 :=D , (25)

Hk
i1 := IAk−Mi

T ° Hk
i °  IAk−Mi Bk−Mi , i=0,M−1 , (26)

H= Hk≈
Hk
M (27)

where D is defined in (23) and H is the approximate inverse Hessian matrix
to be used instead of H−1 in formula (1) for solving the new search direction.
Note that the one-step limited-memory quasi-Newton minimisation method
(16) (see [1]) is a particular case of (25-27) with M=1 and D≡I .

This algorithm is used in L-BFGS subroutine implemented by the author of
[2].

2. Implementtaion

The original implementation of L-BFGS algorithm can be obtained from Jorge
Nocedal’s web page: http://www.ece.northwestern.edu/~nocedal/L-
BFGS.html. Our derivation of the L-BFGS algorithm closely follows the
original implementation. At each iteration, if the next iterate doesn’t reduce

Page 7 of 9

http://www.ece.northwestern.edu/~nocedal/lbfgs.html
http://www.ece.northwestern.edu/~nocedal/lbfgs.html

Rev 1. Quasi-Newton L-BFGS Minimisation

the objective function value, a backtracking line search is undertaken. The
line search algorithm implemented in the original code (see [3]) is based on
“bracketing” procedure (MCSRCH subroutine) that requires both gradient
and objective function re-evaluation at each backtracking step. In cases when
the gradient evaluation is more expensive than that of the objective function
value, it is recommended to replace the existing line search with e.g.,
bisection, secants or polynomial line search. For relatively “flat” objective
functions either bisection or secants algorithm demonstrates good results, a
polynomial line search method (see [9]) should be used if the objective
function is asymptotically polynomial.

3. Further Reading.

[1] provides an undergraduate-level introduction to L-BFGS and comparison
with other unconstrained optimization techniques. The limited-memory BFGS
was first introduced in [2]. [3] established a relationship between BFGS (as a
member of a broader family of methods that use Broyden class of updates)
and variable-metric Conjugate Gradients solvers. [5] demonstrated that the
updates used in BFGS and DFP algorithms are particular cases of the
Wedderburn rank-reduction formula. [6,7] propose an alternative reduced-
Hessian quasi-Newton method based on the same idea of approximating the
Hessian from curvature information accumulated in a sequence of expanding
subspaces as the one implemented by L-BFGS. [8] demonstrated a successful
application of a modified L-BFGS solver with a polynomial line search in
sesimic imaging.

References.

1. Gill, Philip E.; Murray, Walter; Wright. Practical Optimization.
2. Nocedal, J. "Updating quasi-Newton matrices with limited storage",

Mathematics of Computation, 1980, Vol.24, No.151, pp. 773-782.
3. JORGE J. MORE, DAVID J. THUENTE. MCSRCH Line Search.

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983.
4. Nazareth, Larry. A Relationship Between the BFGS and Conjugate

Gradient Algorithms and Its Implications for New Algorithms. SIAM J.
Numer. Anal. Vol. 16, No. 5, October 1979.

5. Chu, Moody T.; Funderlic, Golub. A rank-one Reduction Formula and Its
Applications to Matrix Factorizations. SIAM Review, Vol. 37, No. 4, pp.
512-530, December 1995.

6. Gill, Philip E.; Leonard. Reduced-Hessian Quasi-Newton Methods for
Unconstrained Optimization. SIAM J. Optim., Vol.12, No.1, pp. 209-237,
2001.

Page 8 of 9

Rev 1. Quasi-Newton L-BFGS Minimisation

7. Gill, Philip E.; Leonard. Limited-Memory Reduced-Hessian Methods for
Large-Scale Unconstrained Optimization. SIAM J. Optim., Vol. 14, No. 2,
pp. 380-401, 2003.

8. Maharramov, M. A; Albertin. Locally-Optimal Image-Difference Wave
Equation Tomography. 77th Annual International Meeting, SEG,
Expanded Abstracts, 3009-3013.

9. Press, William H.; Teukolsky, Vetterling, Flannery. Numerical Recipes
3rd Edition: the Art of Scientific Computing. Cambridge University
Press; 3 edition, September 10, 2007.

Page 9 of 9

