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Quasi-Newton Minimisation with Limited Storage

Introduction.

Our objective is to find the global minimum of a twice continuously 
differentiable function of many variables F x =F x1 , , xN   where N can be 
arbitrarily large.

The classical Newton Minimisation Method delivers a fast-converging 
(superlinear) algorithm for solving this problem when a good initial 
approximation is known.

Following is a formal description of the Newton Minimisation algorithm for 
the above problem:

Let x0=x01 , , x0
N   be an initial approximation of the point where F takes its 

global minimum.
Let k=1  be the iteration counter, ε0  - termination flag.

Do loop:

Evaluate the gradient Gk−1= ∂F∂ x1
, , ∂F

∂xN   at x=xk−1 .

Evaluate the Hessian matrix H=∥
∂2F

∂ xi∂ x j∥∣x=xk−1
 at x=xk−1 .

Define a direction in which the next iteration will be searched:

pk=−H−1Gk−1 . (1)

Minimise the univariate function 

Φ α  :=F xk−1αpk  ,
a=αmin:Φ αmin=min

α
Φ α  . (2)

Evaluate the next approximation to solution:

xk=xk−1sk , sk=αminpk

Terminate loop if ∣F  xk ∣εmax 1,∥xk∥ , otherwise resume loop with k 
= k + 1.
End of loop
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Application of this algorithm runs into difficulties when the Hessian matrix 
cannot be easily obtained numerically.
Two problems are posed in connection with practical application of the 
Newton Method:

- Can the inverse of the Hessian matrix in (1) be numerically 
approximated using the output of previous iterations rather 
than calculated directly?

- What univariate minimisation (i.e. line search) can best be used 
to minimise function (2) so as to achieve the fastest global 
convergence?

1. Limited Memory quasi-Newton Minimisation Method.

A number of algorithms exist (collectively known as quasi-Newton methods) 
that address this problem. The main idea of the quasi-Newton methods is to 
use the search directions sk  and gradients Gk  returned from previous 
iterations to estimate the value of the Hessian matrix.

All of the quasi-Newton methods are based on the following observation: If H 
is the Hessian matrix of F at x=xk−1 , sk−i=xk−i−xk−i−1  are the increments 
of x for previous iterations, yk−i=Gk−i−Gk−i−1  are increments of the 
gradient, and the index i=1, ,M  identifies the M previous steps of the 
algorithm, then:

yk−i=Gk−i−Gk−i−1=∇ F∣x=xk−i
−∇ F∣x=x

k−i−1
¿H xk−i−xk−i−1=Hsk−i

sk−i≈H−1 yk−i , (3)

assuming that sk−i=xk−i−xk−i−1  or H  are “sufficiently small”.

In any quasi-Newton method, the Hessian matrix is approximated with a 
symmetric positive-definite matrix that satisfies (3) for i=1,…,M, where M is 
much smaller than N (if M = N then H can be restored uniquely from (3)). 
When N is very large and it is either impossible or impractical to store N2  
elements of the approximate Hessian matrix, any of the “limited storage” 
quasi-Newton methods can be used that approximate the inverse Hessian 
matrix “on the fly” along with evaluating the next search direction through 
formula (1).
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Assuming that Hk  is an approximation to the Hessian obtained at the kth 
step, let us chose a symmetric matrix Hk1  that satisfies (3) for i=0 exactly:

Hk1sk=yk (4)

First, we pick a symmetric rank-one update 

Hk1  i
i
= Hk  i

i
u iv j . (5)

Substituting (5) into (4) we can transform (5) into

Hk1 i
i
= Hk  i

i


1
〈v , sk 〉

yk−Hk sk 
iv j (6)

assuming that v  is not orthogonal to sk . The requirement of symmetry for 
(6) implies that v  be chosen as v=yk−Hk sk . The latter is assumed to be 
non-zero, as otherwise Hk  would have already satisfied (4) in place of Hk1  
so no correction would have been required. Finally, we arrive at the following 
symmetric rank-one Hessian update:

Hk1  j
i
=Hk  j

i


1
〈 yk−Hk sk , sk〉

yk−Hk sk 
i
 yk−Hk sk  j (7)

Formula (7) exhausts all possible symmetric rank-one updates. In order to 
obtain alternative Hessian correction formulae, we will need to look into 
updates of rank two and above.

Let us revert to the rank-one update (6), this time allowing v  to be arbitrary 
(but not orthogonal to sk ), and symmetrise the resultant operator Hk1 :

Hk1
2  j

i
=Hk1Hk1

T  j
i
/2 . (8)

The operator Hk1
2 , although symmetric, does not satisfy (4) so long as v  is 

arbitrary. However, we can apply formulae (6) and (8) iteratively:

 Hk1
n i

i
=Hk1

n i
i

1
〈v ,sk〉

yk−Hk1
n sk 

i
v j

Hk1
n1  j

i
= Hk1

n  Hk1
nT  j

i
/2,

n=3,4,

(9)
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Passing n to limit in (9) we can see that the limit Hk1= lim
n∞

Hk1
n

 exists, 

satisfies (4), is symmetric and given by the following formula:

Hk1  j
i
=Hk  j

i

1
〈v ,sk〉

  yk−Hk sk 
iv jv i yk−Hk sk  j −

−
〈yk−Hk sk , sk 〉

〈v , sk 〉
2

v iv j

(10)

If v  is taken as yk  in 10 (which is possible to do as long as the Hessian is 
positive defined; indeed 〈sk , yk 〉=〈sk ,Hk1sk〉0 ) we get the so-called 
Davidon-Fletcher-Powell (DFP) update:

Hk1  j
i
=Hk  j

i
−
1
〈sk , Hk sk 〉

Hk sk 
i Hk

T sk  j
1
〈yk , sk〉

yk 
i
yk  j

〈sk ,Hk sk〉 wk 
i
wk  j

(11)

where

wk 
i
=

1
〈 yk , sk〉

yk 
i
−

1
〈sk , Hk sk 〉

Hk sk 
i
. (12)

Vector (12) is orthogonal to sk  hence any multiple of the rank-one matrix 

wk 
i
wk  j  can be added to Hk1  without affecting the symmetry and 

condition (4).

While adding such a matrix to (11) leads to a family of parameterised updates, 

the method based on using (11) with the multiple of wk 
i
wk  j  term 

altogether dropped is believed to be the most efficient one. Thus, we arrive at 
the following Broyden-Fletcher-Goldfarb-Shanno (BFGS) update:

Hk1  j
i
=Hk  j

i
−

1
〈sk , Hk sk〉

Hk sk 
i Hk

T sk  j
1

〈 yk ,sk〉
yk 

i
yk  j . (13)

Before we can apply (13) in a quasi-Newton minimisation for calculating the 
search direction using formula (1), we need to invert the matrix Hk1 . In the 
event we use only one-step BFGS update and Hk= I  is the identity matrix, the 
formula (13) will be transformed into
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Hk1  j
i
=δ j

i−
1

〈sk ,sk〉
sk 

i
sk  j

1
〈yk , sk〉

 yk 
i
 yk  j . (14)

We can show by direct substitution that the inverse of matrix (14) is given by 

δm
j −

yk 
j
sk m

〈yk , sk〉


sk 
j
sk m

〈 yk , sk 〉
−

sk 
j
 yk m

〈 yk ,sk〉


sk 
j
sk m〈 yk , yk〉

〈yk , sk〉
2

. (15)

Indeed, the product of matrices (14) and (15) is

{δ j
i
−

sk 
i
sk  j

〈sk , sk 〉


yk 
i
yk  j

〈 yk ,sk〉 }×¿

¿×{δmj − yk 
j
sk m

〈yk , sk〉


sk 
j
sk m

〈 yk , sk 〉
−

sk 
j
yk m

〈yk ,sk〉


sk 
j
sk m〈 yk , yk〉

〈 yk , sk 〉
2 }=

¿δm
i −

 yk 
i
sk m

〈 yk , sk 〉


sk 
i
sk m

〈 yk , sk 〉
−

sk 
i
 yk m

〈 yk , sk 〉


sk 
i
sk m 〈 yk , yk 〉

〈 yk , sk 〉
2 −

−
sk 

i
sk m

〈sk , sk〉


yk 
i
yk m

〈yk , sk〉


sk 
i
sk m〈 yk ,sk〉

〈sk ,sk〉 〈 yk ,sk〉
−

sk 
i
sk m〈 sk ,sk〉

〈 sk ,sk〉〈 yk ,sk〉



sk 

i
yk m〈sk ,sk〉

〈sk , sk〉 〈yk ,sk〉
−

sk 
i
sk m〈 sk ,sk〉〈 yk , yk〉

〈 sk ,sk〉〈 yk ,sk〉
2 −

 yk 
i
sk m 〈 yk , yk〉

〈 yk , sk〉
2 


yk 

i
sk m〈yk , sk〉

〈yk , sk〉
2

−
 yk 

i
 yk m〈 yk ,sk〉

〈 yk ,sk〉
2


 yk 

i
sk m〈 yk ,sk〉 〈yk , yk〉

〈 yk ,sk〉
3

=

¿δm
i

- the identity matrix.

Using operator (15) in formula (1) we get the so-called limited-memory BFGS 
method (L-BFGS) that uses the output of only one previous iteration to 
approximate the inverse Hessian matrix. In the context of formula (1), the 
application of operator (15) will result in the following formula (we introduce 
an intermediate approximation pk

0   to the new search direction pk ):
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pk
0 :=−Gk−1

pk :=pk
0
−
〈 sk−1,pk

0〉

〈 yk−1,sk−1〉
yk−1

〈sk−1,pk
0〉

〈 yk−1,sk−1〉
sk−1−

〈 yk−1,pk
0〉

〈 yk−1,sk−1〉
sk−1


〈sk−1, pk

0
〉 〈yk−1, yk−1,〉

〈yk−1,sk−1〉
2

sk−1.

(16)

We can eliminate the last term in (16) by introducing another intermediate 
approximation pk

1 : 

pk
0 :=−Gk−1 , (17)

pk
1 :=pk

0
−

〈sk−1,pk
0〉

〈yk−1,sk−1〉
yk−1 , (18)

pk :=pk
1[ 〈sk−1,pk

0
〉

〈 yk−1,sk−1〉
−

〈yk−1,pk
1
〉

〈 yk−1,sk−1〉 ]sk−1 . (19)

Note that pk  is calculated in (19) from both pk
0  and pk

1 . Equivalence of 
(17-19) to (16) can be demonstrated by direct substitution.

If we re-write (17-19) in the operator form, we obtain

pk
0 :=−IGk−1 (20)

pk
1 := IAk−1 pk

0 , Ak−1=∥a j
i∥=∥−

yk−1
i sk−1

q δqj
〈 yk−1,sk−1〉

∥ (21)

pk := IAk−1
T ,pk

1Bk−1 pk
0 , Bk−1=∥b j

i∥=∥
sk−1
i sk−1

q δqj
〈yk−1,sk−1〉

∥,

Bk−1
T =Bk−1 .

(22)

The identity matrix I in (20) can be replaced with an approximate inverse 
Hessian. Formula (3) suggests that

D=
〈yk−1, sk−1〉

〈yk−1, yk−1〉
I (23)

 can be used as the initial diagonal approximation for the inverse Hessian 
matrix. 

Now, once the one-step L-BFGS update has been represented in an operator 
form, we can adapt it to perform multi-step Hessian updates. If the values 
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sk−i  and yk−i=Gk−i−Gk−i−1  for M previous steps are known, then (21-22) 
can be used to make M iterative “corrections” of the inverse Hessian matrix 
(and hence the new search direction) as follows:

pk
0 :=−IGk−1

pk
0,0 :=pk

0

pk
0, i :=∏

j=1

i

 IAk− j pk
0 , i=1,M ,

pk
0,M1=Dpk

0,M ,

pk
1, i := IAk−i

T pk1, i1Bk−i pk
0, i−1 , i=M,,1,

pk :=pk
1,1.

(24)

Note that operators (21) and (22) – i.e., iterations (18) and (19) – are applied 
in a “stacking” FILO order: (18) are applied in the direct order while (19), in 
the reverse order. 

Alternatively, the above process can be defined as a recursive application of 
“corrections” contributed by each of the M previous iterations to the 
approximate inverse Hessian matrix as follows.

Let Hk
i  denote the approximation to the inverse Hessian matrix H obtained 

using information from i steps k-M+i-1,…,k-M. There holds then the following 
recurrent formula:

Hk
0 :=D , (25)

Hk
i1 := IAk−Mi

T ° Hk
i °  IAk−Mi Bk−Mi , i=0,M−1 , (26)

H= Hk≈
Hk
M (27)

where D  is defined in (23) and H  is the approximate inverse Hessian matrix 
to be used instead of H−1  in formula (1) for solving the new search direction. 
Note that the one-step limited-memory quasi-Newton minimisation method 
(16) (see [1]) is a particular case of (25-27) with M=1 and D≡I .

This algorithm is used in L-BFGS subroutine implemented by the author of 
[2].

2. Implementtaion

The original implementation of L-BFGS algorithm can be obtained from Jorge 
Nocedal’s web page: http://www.ece.northwestern.edu/~nocedal/L-
BFGS.html. Our derivation of the L-BFGS algorithm closely follows the 
original implementation. At each iteration, if the next iterate doesn’t reduce 
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the objective function value, a backtracking line search is undertaken. The 
line search algorithm implemented in the original code (see [3]) is based on 
“bracketing” procedure (MCSRCH subroutine) that requires both gradient 
and objective function re-evaluation at each backtracking step. In cases when 
the gradient evaluation is more expensive than that of the objective function 
value, it is recommended to replace the existing line search with e.g., 
bisection, secants or polynomial line search. For relatively “flat” objective 
functions either bisection or secants algorithm demonstrates good results, a 
polynomial line search method (see [9]) should be used if the objective 
function is asymptotically polynomial.

3. Further Reading.

[1] provides an undergraduate-level introduction to L-BFGS and comparison 
with other unconstrained optimization techniques. The limited-memory BFGS 
was first introduced in [2]. [3] established a relationship between BFGS (as a 
member of a broader family of methods that use Broyden class of updates) 
and variable-metric Conjugate Gradients solvers. [5] demonstrated that the 
updates used in BFGS and DFP algorithms are particular cases of the 
Wedderburn rank-reduction formula. [6,7] propose an alternative reduced-
Hessian quasi-Newton method based on the same idea of approximating the 
Hessian from curvature information accumulated in a sequence of expanding 
subspaces as the one implemented by L-BFGS. [8] demonstrated a successful 
application of a modified L-BFGS solver with a polynomial line search in 
sesimic imaging.
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