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SUMMARY

We present a technique for reconstructing subsurface model
changes from time-lapse seismic survey data using full-
waveform inversion (FWI). The technique is based on simulta-
neously inverting multiple survey vintages, with regularization
of the model difference. In addition to the fully simultaneous
FWI that requires the solution of a larger optimization prob-
lem, we propose a simplified cross-updating workflow that can
be implemented using the existing FWI tools. The proposed
methods are demonstrated on synthetic examples, and their ro-
bustness with regard to repeatability issues is compared to al-
ternative techniques, such as parallel, sequential, and double-
difference methods.

INTRODUCTION

Effective reservoir monitoring depends on successful track-
ing of production-induced fluid movement in the reservoir and
overburden, using input from seismic imaging, geomechan-
ics, geology and reservoir simulation (Biondi et al., 1996). To
achieve this, most traditional methods rely on the conversion
of picked time shifts and reflectivity differences between mi-
grated images to reflector movement and impedance changes.
While effective in practical applications, this approach requires
a significant amount of interpretation and relies on quality con-
trol in the conversion process. Wave-equation image-difference
tomography has been proposed as a more automatic alternative
method to recover velocity changes (Albertin et al., 2006); it
allows localized target-oriented inversion of model perturba-
tions (Maharramov and Albertin, 2007). An alternative ap-
proach is based on using the high-resolution power of the full-
waveform inversion (Sirgue et al., 2010) to reconstruct produc-
tion-induced changes from wide-offset seismic acquisitions,
and is the subject of this paper.

Time-lapse full-waveform inversion (Watanabe et al., 2004;
Denli and Huang, 2009; Routh et al., 2012) is a promising
technique for time-lapse seismic imaging where production
induced subsurface model changes are within the resolution
of FWI. However, like alternative time-lapse techniques, time-
lapse FWI is sensitive to repeatability issues (Asnaashari et al.,
2012). Non-repeatable acquisition geometries (e.g., slightly
shifted source and receiver positions), acquisition gaps (e.g.,
due to previously absent obstacles), different source signatures
and measurement noise—all contribute to differences in the
data from different survey vintages. Differences in the input
data sets due to repeatability issues may easily mask valuable
production-induced changes. However, even with noise-free
synthetic data without any acquisition repeatability issues, nu-
merical artifacts may contaminate the inverted difference of
monitor and baseline when practical limitations are imposed
on solver iteration count. Maharramov and Biondi (2013) pro-
posed a time-lapse FWI that minimizes model differences out-

side of areas affected by production by jointly inverting for
multiple models, and imposing a regularization condition on
the model difference. The joint inversion can be performed
simultaneously for multiple model vintages or using an empir-
ical technique of “cross-updating” (Maharramov and Biondi,
2013). In this work we apply these methods to noisy synthetic
data and compare the results to alternative methods.

THE METHOD

Full-waveform inversion is defined as solving the following
optimization problem (Tarantola, 1984; Virieux and Operto,
2009)

‖Mu−d‖ → min (1)

where M,d are the measurement operator and data, u is the
solution of a forward-modeling problem

D(m)u = φ , (2)

where D is the forward-modeling operator that depends on a
model vector m as a parameter, and φ is a source. The mini-
mization problem (1) is solved with respect to either both the
model m and source φ or just the model. In the frequency-
domain formulation of the acoustic waveform inversion, the
forward-modeling equation (2) becomes

−ω2u− v2(x1, . . . ,xn)∆u = φ(ω,x1, . . . ,xn) (3)

where ω is a temporal frequency, n is the problem dimension,
and v is the acoustic wave propagation velocity. Values of the
slowness s = 1/v at all the points of the modeling domain con-
stitute the model parameter vector m. The direct problem (3)
can be solved in the frequency domain, or in the time domain
followed by a discrete Fourier transform in time (Virieux and
Operto, 2009). The inverse problem (1) is typically solved us-
ing a multiscale approach, from low to high frequencies, sup-
plying the output of each frequency inversion to the next step.

FWI applications in time-lapse problems seek to recover in-
duced changes in the subsurface model using multiple data
sets from different acquisition vintages. For two surveys suffi-
ciently separated in time, we call such data sets (and the asso-
ciated models) baseline and monitor.

Time-lapse FWI can be carried out by separately inverting the
baseline and monitor models (parallel difference) or inverting
them sequentially with, e.g., the baseline supplied as a starting
model for the monitor inversion (sequential difference). An-
other alternative is to apply the double-difference method, with
a baseline model inversion followed by a monitor inversion
that solves the following optimization problem

‖
(
Ms

mum−Ms
bub

)
− (Mmdm−Mbdb)‖ → min (4)

by changing the monitor model (Watanabe et al., 2004; Denli
and Huang, 2009; Zheng et al., 2011; Asnaashari et al., 2012;
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Joint FWI of time-lapse data

Raknes et al., 2013). The subscripts in equation (4) denote the
baseline and monitor surveys, d denotes the field data, and the
M’s are measurement operators that project the synthetic and
field data onto a common grid. The superscript s indicates the
measurement operators applied to the synthetic data.

In all of the described techniques, optimization is carried out
with respect to one model at a time, albeit of different vintages
at different stages of the inversion. In our method we propose
to invert for the baseline and monitor models simultaneously
by solving the following optimization problem:

α‖Mbub−db‖2 +β‖Mmum−dm‖2 + (5)

γ‖
(
Ms

mum−Ms
bub

)
− (Mmdm−Mbdb)‖2 + (6)

α1‖WbRb(mb−mPRIOR
b )‖2 + (7)

β1‖WmRm(mm−mPRIOR
m )‖2 + (8)

δ‖WR(mm−mb−∆mPRIOR)‖2 → min, (9)

with respect to both the baseline and monitor models mb and
mm. The terms (5) correspond to separate baseline and mon-
itor inversions, the term (6) is the optional double difference
term, the terms (7) and (8) are optional separate baseline and
monitor inversion Tikhonov regularization terms (Aster et al.,
2012), and the term (9) represents Tikhonov regularization of
the model difference. In (7)-(9), R and W denote regulariza-
tion and weighting operators respectively, with the subscript
denoting the survey vintage where applicable.

A joint inversion approach has been applied earlier to the lin-
earized waveform inversion (Ayeni and Biondi, 2012). In this
work, we propose a simultaneous full-waveform inversion with
special emphasis on regularization of the model difference in
equation (9). Constraining the model difference where produc-
tion effects are expected to be negligible while simultaneously
solving for both baseline and monitor models can be expected
to reduce both spurious numerical artifacts and non-repeatable
acquisition-related artifacts in the model difference.

An implementation of the proposed simultaneous inversion al-
gorithm requires solving a nonlinear optimization problem with
twice the data and model dimensions of problems (1) and (4).
The model difference regularization weights W and, option-
ally, the prior ∆mPRIOR may be obtained from prior geome-
chanical information. For example, a rough estimate of produc-
tion-induced velocity changes can be obtained from time shifts
(Hatchell and Bourne, 2005; Barkved and Kristiansen, 2005)
and used to map subsurface regions of expected production-
induced perturbation, and optionally provide a difference prior.

In addition to the fully simultaneous inversion, we propose
a cross-updating technique that offers a simple but remark-
ably effective approximation to minimizing the objective func-
tion (5),(9), while obviating the difference regularization and
weighting operators R and W. This technique consists of one
standard run of the sequential difference algorithm, followed
by a second run with the inverted monitor model supplied as
the starting model for the second baseline inversion

mINIT→baseline inversion→monitor inversion→
baseline inversion→monitor inversion,

(10)

and taking the difference of the latest inverted monitor and
baseline models. Process (10) can be considered as an approxi-
mation to minimizing (5) and (9) because non-repeatable foot-
prints of both inversions are propagated to both models, can-
celing out in the difference. Both the simultaneous inversion
and cross-updating minimize the model difference by tackling
model artifacts that are in the null space of the Fréchet deriva-
tive of the forward modeling operator. The joint inversion min-
imizes the effect of such artifacts on the model difference by
either minimizing the model difference term (9) in the simulta-
neous inversion, or by propagating these artifacts to both mod-
els in cross-updating (10). Note that this process is not guaran-
teed to improve the results of the baseline and monitor model
inversions but is only proposed for improving the model dif-
ference.

NUMERICAL EXAMPLES

The Marmousi velocity model is used as a baseline, over a
384×122 grid with a 24 m grid spacing. Production-induced
velocity changes are modeled as a negative−200 m/s perturba-
tion at about 4.5 km inline 800 m depth, and a positive 300 m/s
perturbation at 6.5 km inline, 1 km depth shown on Figure 1.
The whole Marmousi model is inverted, however, only model
differences for the section between the approximate inline co-
ordinates 3.6 km and 7.2 km to the depth of approximately 1.6
km are shown here. The inversion is carried out in the fre-

Figure 1: True velocity difference consists of a negative (−200
m/s) perturbation at about 4.5 km inline 800 m depth, and a
positive (300 m/s) perturbation at 6.5 km inline, 1 km depth.

quency domain for 3.0, 3.6, 4.3, 5.1, 6.2, 7.5, 9.0, 10.8, 12.8,
and 15.5 Hz, where the frequencies are chosen based on the
estimated offset to depth range of the data (Sirgue and Pratt,
2004). The baseline acquisition has 192 shots at a depth of 16
m with a 48 m spacing, and 381 receivers at a depth of 15 m
with a 24 m spacing. The minimum offset is 48 m. The source
function is a Ricker wavelet centered at 10.1 Hz. Absorb-
ing boundary conditions are applied along the entire model
boundary, including the surface (thus suppressing multiples).
A smoothed true model is used as a starting model for the ini-
tial baseline inversion (and for the initial monitor inversion in
the parallel difference). The smoothing is performed using the
triangular filter with a 20-sample half-window in both vertical
and horizontal directions. Random Gaussian noise is added to
the noise-free synthetic data to produce noisy data sets with 14
dB and 7 dB signal-to-noise ratios. Noisy monitor data sets
are generated for the model perturbation of Figure 1, using
the same acquisition geometry and source wavelet. Results of
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model difference inversion from the 14 dB and 7 dB synthetic
data sets using various methods are shown on Figures 3 and
4, respectively. The simultaneous inversion objective function
contains only terms (5) and (9) with no difference prior, i.e.,
∆mPRIOR = 0. The model-difference regularization weights W
in (9) are set to 1 outside approximately .5 km from the centers
of the velocity anomalies (Figure 1), tapering to zero within a
smaller radius of the anomalies. The two terms in (5) are of the
same magnitude and therefore α and β are set to 1. Parame-
ter δ is chosen constant and equal to 10−5 but can be different
for different acquisition source and geometry parameters. The
result of the initial baseline inversion is supplied as a starting
model for both mb and mm in the simultaneous inversion. In
all the inversions, up to 10 iterations of the nonlinear conjugate
gradients algorithm (Nocedal and Wright, 2006) are performed
for each frequency. Neither regularization nor model priors
are used in single-model inversions (i.e., in the cross-updating,
parallel, sequential, and double difference methods).

Figure 2: Model difference inverted from a clean synthetic
for different baseline and monitor acquisition geometries and
sources.

The results of applying cross-updating to the two noisy data
sets are shown on Figures 3c and 4c, respectively. The cor-
responding simultaneous inversion results are shown on Fig-
ures 3d and 4d. Since the problem (1) is nonlinear, supplying
the result of the highest frequency inversion back to the low-
est frequency and repeating the whole inversion cycle for all
frequencies may result in achieving a better data misfit. In
repeated cycles, lower-frequency inversions usually terminate
earlier but higher frequencies still deliver model updates. For
an objective comparison of the joint inversion with the parallel,
sequential and double-difference methods, the effects of insuf-
ficient iteration count are reduced by performing an extra cycle
of baseline and monitor inversion in each of the latter methods
(we call this approach “iterated” parallel, sequential and dou-
ble difference). The results of applying the iterated parallel
difference to the two noisy data sets are shown on Figures 3a
and 4a. The results for the iterated sequential difference are
shown on Figures 3b and 4b. The double-difference inversions
are shown on Figures 3e and 4e. The double difference method
yields the worst results for noisy data, and this is consistent
with earlier tests of the method on noisy data (Asnaashari et al.,
2012). The sequential difference delivers consistent improve-
ment over the parallel difference, while the cross-updating de-
livers a significant improvement over the sequential method.
The simultaneous inversion and cross-updating appear to yield
similar results where W≈ 0. The results of inverting the model
difference from the noise-free synthetic are not shown as all

the methods perform well in this case. Joint inversion, either
by cross-updating or simultaneous inversion, demonstrates ro-
bustness with regard to uncorrelated noise in the data.

Cross-updating keeps the baseline and monitor data spaces sep-
arate, and the method is robust with respect to changes in ac-
quisition geometry and source parameters between surveys.
Figure 2 demonstrates cross-updating with different surveys.
The monitor survey in this case has shot positions shifted by
24 m to the right, with shot and receiver depths now changed
to 12 and 20 m, respectively. The new monitor Ricker source
peak frequency is changed to 12.1 Hz. To isolate the effects of
survey acquisition changes from the effects of random noise,
model difference is inverted from a clean synthetic. The result
of Figure 2, in good agreement with the true perturbation of
Figure 1, demonstrates the robustness of cross-updating with
respect to non-random survey repeatability issues.

CONCLUSIONS

Our new simultaneous inversion and cross-updating techniques
provide robust alternatives to the existing time-lapse FWI meth-
ods. Applying the cross-updating method to synthetic data sets
with variable amount of noise achieved a significant reduction
of artifacts in the model difference compared to the parallel, se-
quential, and double difference methods. However, choosing
the weighting operator W in the simultaneous inversion has to
be controlled by prior knowledge of where production-induced
velocity changes are likely to occur. The cross-updating method
offers an attractive alternative to the regularized simultaneous
inversion as it does not require additional regularization pa-
rameters.

In addition to achieving better results than the double differ-
ence method for noisy synthetics, cross-updating is less sen-
sitive to repeatability issues that are due to differences in ac-
quisition geometry and sources. The latter may require a cross-
equalization of different data vintages (Ayeni and Biondi, 2012)
prior to double differencing while the simultaneous inversion
and cross-updating do not require data cross-equalization as
these methods operate in the model space. However, the si-
multaneous inversion allows a hybrid approach with a non-
zero double-difference term (6) but the practicality of such a
combined approach requires further study.
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Joint FWI of time-lapse data

Figure 3: Model difference inverted from a 14 dB SNR syn-
thetic with matching baseline and monitor acquisition geome-
tries using (a) iterated parallel difference; (b) iterated sequen-
tial difference; (c) cross-updating; (d) regularized simultane-
ous inversion; (e) iterated double difference.

Figure 4: Model difference inverted from a 7 dB SNR syn-
thetic with matching baseline and monitor acquisition geome-
tries using (a) iterated parallel difference; (b) iterated sequen-
tial difference; (c) cross-updating; (d) regularized simultane-
ous inversion; (e) iterated double difference.
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