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Abstract. We present a powerful and easy-to-implement iterative algorithm for solving large-scale optimization
problems that involve L1/total-variation (TV) regularization. The method is based on combining
the Alternating Directions Method of Multipliers (ADMM) with a Conjugate Directions technique
in a way that allows reusing conjugate search directions constructed by the algorithm across multiple
iterations of the ADMM. The new method achieves fast convergence by trading off multiple applica-
tions of the modeling operator for the increased memory requirement of storing previous conjugate
directions. We illustrate the new method with a series of imaging and inversion applications.

1. Introduction. We address a class of regularized least-squares fitting problems of the
form

(1.1)
‖Bu‖1 +

α

2
‖Au− d‖22 → min,

u ∈ R
N , d ∈ R

M , A : RN → R
M , B : RN → R

K , K ≤ N,

where d is a known vector (data), u a vector of unknowns1, and A,B are linear operators. If
B is the identity map, then problem (1.1) is a least-squares fitting with L1 regularization,

(1.2) ‖u‖1 +
α

2
‖Au− d‖22 → min .

If the unknown vector u is the discretization of a function, and B is the first-order finite
difference operator

(Bu)i = ui+1 − ui, i = 1, 2, . . . , N − 1,

then problem (1.1) turns into a least-squares fitting with a total-variation (TV) regularization

(1.3) ‖∇u‖1 +
α

2
‖Au− d‖22 → min .

On the one hand, in (1.2) we seek a model vector u such that forward-modeled data Au

match observed data d in the least squares sense, while imposing sparsity-promoting L1

regularization. In (1.3), on the other hand, we impose blockiness-promoting total-variation
(TV) regularization. Note that rather than using a regularization parameter as a coefficient
of the regularization term, we use a data-fitting weight α. TV regularization (also known as
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the Rudin-Osher-Fatemi, or ROF, model [36]) acts as a form of “model styling” that helps
to preserve sharp contrasts and boundaries in the model even when spectral content of input
data has a limited resolution.

L1-TV regularized least-squares fitting, a key tool in imaging and de-noising applications
(see, e.g. [36, 10, 42, 26]), is beginning to play an increasingly important role in applications
where the modeling operator A in (1.1) is computationally challenging to apply. In particular,
in seismic imaging problems of exploration geophysics such as full-waveform inversion [39, 16]
modeling of seismic wave propagation in a three-dimensional medium from multiple seismic
sources is by far the greatest contributor to the computational cost of inversion, and reduction
of the number of applications of the operator A is key to success in practical applications.

L1-regularized least-squares problems can be reduced to inequality-constrained quadratic
programs and solved using interior-point methods based on, e.g., Newton [7] or nonlinear
Conjugate Gradients [26] methods. Alternatively, the resulting bound-constrained quadratic
programs can be solved using gradient projection [17] or projected Conjugate Gradients [33].
A conceptually different class of techniques for solving L1-regularized least-squares problems
is based on homotopy methods [23, 15, 31].

Another class of methods for solving (1.1) that merits a special mention applies split-
ting schemes for the sum of two operators. For example the iterative shrinking-thresholding
algorithm (ISTA) is based on applying forward-backward splitting [8, 32] to solving the L1-
regularized problem (1.2) by gradient descent [4, 11, 12]:

(1.4)
yk+1 = uk − γαAT (Auk − d) ,

uk+1 = shrink {yk+1, γ} ,

where γ > 0 is a sufficiently small step parameter, and the soft thresholding or shrinkage
operator is the Moreau resolvent (see, e.g., [1]) of ∂γ‖u‖1,

(1.5)
shrink{y, γ} = (1 + ∂γ‖y‖1)−1 = argmin x

{

γ‖x‖1 +
1

2
‖y − x‖22

}

=

y

|y| max (|y| − γ, 0) ,

and ∂ = ∂u denotes the subgradient [34, 1], and the absolute value of a vector is computed
component-wise. The typically slow convergence of the first-order method (1.4) can be ac-
celerated by an over-relaxation step [29], resulting in the Fast ISTA algorithm (FISTA) [3]:

(1.6)

yk+1 = uk − γαAT (Auk − d) ,

zk+1 = shrink{yk+1, γ} ,

ζk+1 =

(

1 +
√

1 + 4ζ2k

)

/2,

uk+1 = yk+1 +
ζk − 1

ζk+1
(yk+1 − yk) ,

where ζ1 = 1 and γ is sufficiently small.
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It is important to note that algorithm (1.6) is applied to the L1-regularized problem (1.2),
not the TV-regularized problem (1.3). An accelerated algorithm for solving a TV-regularized
denoising problem2 was proposed in [2] and applied the Nesterov relaxation [29] to solving
the dual of the TV-regularized denoising problem [9]. However, using a similar approach to
solving (1.3) with a non-trivial operator A results in accelerated schemes that still require
inversion of A [2, 21] and thus lack the primary appeal of the accelerated gradient descent
methods—i.e., a single application of A and its transpose per iteration3.

The advantage of (1.6) compared with simple gradient descent is that Nesterov’s over-
relaxation step requires storing two previous solution vectors and provides improved search
direction for minimization. Note, however, that the step length γ is inversely proportional to
the Lipschitz constant of αAT (Au− d) [3] and may be small in practice.

A very general approach to solving problems (1.1) involving either L1 or TV regularization
is provided by primal-dual methods. For example, in TV-regularized least-squares problem
(1.3), by substituting

(1.7) z = Bu

and adding (1.7) as a constraint, we obtain an equivalent equality-constrained optimization
problem

(1.8)
‖z‖1 +

α

2
‖Au− d‖22 → min,

z = Bu.

The optimal solution of (1.8) corresponds to the saddle-point of its Lagrangian

(1.9) L0 (u, z,µ) = ‖z‖1 +
α

2
‖Au− d‖22 + µT (z−Bu) ,

that can be found by the Uzawa method [41]. The Uzawa method finds the saddle point by
alternating a minimization with respect to the primal variables u, z and ascent over the dual
variable µ for the objective function equal to the standard Lagrangian (1.9), L = L0,

(1.10)
(uk+1, zk+1) = argminL (u, z,µk) ,

µk+1 = µk + λ [zk+1 −Buk+1]

for some positive step size λ. Approach (1.10), when applied to the Augmented Lagrangian
[35], L = L+,

(1.11) L+ (u, z,µ) = ‖z‖1 +
α

2
‖Au− d‖22 + µT (z−Bu) +

λ

2
‖z−Bu‖22,

results in the method of multipliers [25]. For problems (1.1) all these methods still require joint
minimization with respect to u and z of some objective function that includes both ‖z‖1 and a

2with A = I in (1.3)
3In [2] inversion of A is replaced by a single gradient descent, however, over-relaxation is applied to the

dual variable.
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smooth function of u. Splitting the joint minimization into separate steps of minimization with
respect u, followed by minimization with respect to z, results in the Alternating-Directions
Method of Multipliers (ADMM) [20, 18, 19, 14, 6]. To establish a connection to the splitting
techniques applied to the sum of two operators, we note that the ADMM is equivalent to
applying the Douglas-Rachford splitting [13] to the problem

(1.12) ∂
[

‖Bu‖1 +
α

2
‖Au− d‖22

]

∋ 0,

where ∂ is the subgradient, and problem (1.12) is equivalent to (1.1). The ADMM is a
particular case of a primal-dual iterative solution framework with splitting [43], where the
minimization in (1.10) is split into two steps,

(1.13)

uk+1 = argminL (u, zk,µk) ,

zk+1 = argminL (uk+1, z,µk) ,

µk+1 = µk + λ [zk+1 −Buk+1]

For the ADMM, we substitute L = L+ in (1.13) but other choices of a modified Lagrange
function L are possible that may produce convergent primal-dual algorithms [43]. Making the
substitution L = L+ from (1.11) into (1.13), and introducing a scaled vector of multipliers,

(1.14) bk = µk/λ, k = 0, 1, 2, . . .

we obtain

(1.15)

uk+1 = argmin
α

2
‖Au− d‖22 +

λ

2
‖zk − Bu+ bk‖22,

zk+1 = argmin ‖z‖1 +
λ

2
‖z − Buk+1 + bk‖22,

bk+1 = bk + zk+1 −Buk+1, k = 0, 1, 2, . . .

where we used the fact that adding a constant term λ/2‖bk‖22 to the objective function does
not alter the solution. In the iterative process (1.15), we apply splitting, minimizing

(1.16) ‖z‖1 +
α

2
‖Au− d‖22 +

λ

2
‖z − Bu+ bk‖22

alternately with respect to u and z. Further we note that the minimization of (1.16) with
respect to z (in a splitting step with u fixed) is given trivially by the shrinkage operator (1.5),

(1.17) zk+1 = shrink {Bu− bk, 1/λ} .

Combining (1.15) and (1.17) we obtain Algorithm 1.
Minimization on the first line of (1.15) at each step of the ADMM requires inversion of

the operator A. In the first-order gradient-descent methods like (1.6) a similar requirement
is obviated by replacing the minimization with respect to variable u by gradient descent.
However, for ill-conditioned problems the gradient may be a poor approximation to the optimal
search direction. One interpretation of Nesterov’s over-relaxation step in (1.6) is that it
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Algorithm 1 Alternating Direction Method of Multipliers (ADMM) for (1.1)

1: u0 ← 0N , zK0 ← 0

2: b0 ← 0K

3: for k ← 0, 1, 2, 3, . . . do
4: uk+1 ← argmin

{

λ
2‖zk −Bu+ bk‖22 + α

2 ‖Au− d‖22
}

5: zk+1 ← shrink {Buk+1 − bk, 1/λ}
6: bk+1 ← bk + zk+1 −Buk+1

7: Exit loop if ‖uk+1 − uk‖2/‖uk‖2 ≤ target accuracy
8: end for

provides a better search direction by perturbing the current solution update with a fraction
of the previous update on the last line of (1.6). The intermediate least-squares problem in
(1.15) can be solved approximately using, for example, a few iterations of conjugate gradients.
However, repeating multiple iterations of Conjugate Gradients at each step of the ADMM may
be unnecessary. Indeed, as we demonstrate in the following sections, conjugate directions
constructed at earlier steps of the ADMM can be reused because the matrix of the system of
normal equations associated with the minimization on the first line of (1.15) does not change
between ADMM steps4. Therefore, we can trade the computational cost of applying the
operator A and its transpose against the cost of storing a few solution and data-size vectors.
As this approach is applied to the most general problem (1.1) with a non-trivial operator B,
in addition to the potential speed-up, this method has the advantage of working equally well
for L1 and TV -regularized problems.

We stress that our new approach does not improve the theoretical convergence proper-
ties of the classic ADMM method under the assumption of exact minimization in step 4 of
Algorithm 1. The asymptotic convergence rate is still O(1/k) as with exact minimization
[24]. The new approach provides a numerically feasible way of implementing the ADMM for
problems where a computationally expensive operator A precludes accurate minimization in
step 4. However, the rate of convergence in the general method of multipliers (1.10) is sen-
sitive to the choice of parameter λ, and an improved convergence rate for some values of λ
can be accompanied with more ill-conditioned minimization problems at each step of (1.15)
[19]. By employing increasingly more accurate conjugate-directions solution of the minimiza-
tion problem at each iteration of (1.15) the new method offsets the deteriorating condition of
the intermediate least-squares problems, and achieves a faster practical convergence at early
iterations.

Practical utility of the ADMM in applications that involve sparsity-promoting (1.2) or
edge-preserving (1.3) inversion is often determined by how quickly we can resolve sparse or
blocky model components. These features can often be qualitatively resolved within relatively
few initial iterations of the ADMM (see discussion in the Appendix of [22]). In our Section 4,
fast recovery of such local features will be one of the key indicators for judging the efficiency
of the proposed method.

In the next section we describe two new algorithms, Steered and Compressive Conjugate

4Only the right-hand sides of the system are updated as a result of thresholding.
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Gradients based on the principle of reusing conjugate directions for multiple right-hand sides.
In Section 3 we prove convergence and demonstrate that the new algorithm coincides with the
exact ADMM in a finite number of iterations. Section 4 contains a practical implementation
of the Compressive Conjugate Gradients method. We test the method on a series of problems
from imaging and mechanics, and compare its performance against FISTA and ADMM with
gradient descent and restarted conjugate gradients.

2. Steered and Compressive Conjugate Directions. Step 4 of Algorithm 1 is itself a
least-squares optimization problem of the form

(2.1) ‖Fu − vk‖22 → min,

where

(2.2) F =

[√
αA√
λB

]

and

(2.3) vk =

[ √
αd√

λ (zk + bk)

]

Solving optimization problem (2.1) is mathematically equivalent to solving the following
system of normal equations [40],

(2.4) FTFu = FTvk,

as operator (2.2) has maximum rank. Solving (2.4) has the disadvantage of squaring the
condition number of operator (2.2) [40]. When the operator A is available in a matrix form,
and a factorization of operator F is numerically feasible, solving the normal equations (2.4)
should be avoided and a technique based on a matrix factorization should be applied directly
to solving (2.1) [5, 37]. However, when matrix A is not known explicitly or its size exceeds
practical limitations of direct methods, as is the case in applications of greatest interest for us,
an iterative algorithm, such as the Conjugate Gradients for Normal Equations (CGNE) [5, 37],
can be used to solve (2.4). Solving (2.1) exactly may be unnecessary and we can expect that
for large-scale problems only a few steps of an iterative method need be carried out. However,
every iteration typically requires the application of operator A and its adjoint, and in large-
scale optimization problems we are interested in minimizing the number of applications of
these operations. For large-scale optimization problems we need an alternative to re-starting
an iterative solver for each intermediate problem (2.1). We propose to minimize restarting
iterations5 by devising a conjugate-directions technique for solving (2.1) with a non-stationary
right-hand side. At each iteration of the proposed algorithm we find a search direction that is
conjugate to previous directions with respect to the operator FTF. In the existing conjugate
direction techniques, iteratively constructed conjugate directions span the Krylov subspaces
[40],

(2.5) Kk = span
{

FTv0,
(

FTF
)

FTv0, . . . ,
(

FTF
)k

FTv0

}

, k = 0, 1, . . . .

5avoiding restarting altogether in the theoretical limit of infinite computer storage
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However, in our approach we construct a sequence of vectors (search directions) that are
conjugate with respect to operator FTF at the kth step but may not span the Krylov subspace
Kk. This complicates convergence analysis of our technique, but allows “steering” search
directions by iteration-dependent right-hand sides. Since the right-hand side in (2.1) is the
result of the shrinkage (1.17) at previous iterations that steer or compress the solution, we
call our approach “steered” or “compressive” conjugate directions.

For the least-squares problem (2.1), we construct two sets of vectors for k = 0, 1, 2, . . .

(2.6)
{p0,p1,p2, . . . ,pk} , {q0,q1,q2, . . . ,qk} ,
qi = Fpi, i = 0, 1, 2, . . . , k,

such that

(2.7) qT
i qj = pT

i F
TFpj = 0 if i 6= j.

Equations (2.6) and (2.7) mean that the vectors pi form conjugate directions [40, 37]. At
each iteration we find an approximation uk to the solution of (2.1) as a linear combination of
vectors pi, i = 0, 1, . . . , k, for which the residual

(2.8) rk+1 = vk+1 − Fuk+1,

is orthogonal to vectors qi,

(2.9) qT
i rk+1 = qT

i (vk+1 − Fuk+1) = 0, i = 0, 1, . . . , k.

Vector pk is constructed as a linear combination of all previous vectors pi, i = 0, 1, . . . , k
and FT rk so that the conjugacy condition in (2.6) is satisfied. The resulting algorithm for
arbitrary vk depending on k is given by Algorithm 2.

Note that the above algorithm is not specific to a particular sequence of right-hand-side
vectors vk and its applicability goes beyond solving the constrained optimization problems
(1.8). The algorithm requires storing 2k + 2 vectors (2.6), as well as one vector each for
the current solution iterate uk, variable right-hand side vk, intermediate vectors wk and sk.
The requirement of storing a growing number of vectors makes the algorithm resemble the
GMRES method [37] for solving linear systems with non-self-adjoint operators. However, in
our case, this is a consequence of having a variable right-hand side, requiring re-computation
of solution iterates as linear combinations of all of the previous search directions (2.6). This
requirement can be relaxed in applications where vector vk is updated, for example, by the
modified Lagrangian technique for solving a constrained optimization problem, and converges
to a limit. In Section 4 we describe practical applications of the algorithm achieving fast
convergence while storing only a subset of vectors (2.6). The algorithm requires one application
of F and its transpose at each iteration and 2k + 3 dot-products of large vectors.

Combining Algorithms 1 and 2 we obtain the Compressive Conjugate Directions Algo-
rithm 3.
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Algorithm 2 Steered Conjugate Directions for solving (2.1)

1: u0 ← 0N

2: p0 ← FTv0, q0 ← Fp0, δ0 ← qT
0 q0

3: for k = 0, 1, 2, 3, . . . do
4: for i = 0, 1, . . . , k do

5: τi ← qT
i vk/δi

6: end for

7: uk+1 ←
∑k

i=0 τipi

8: rk+1 ← vk+1 −
∑k

i=0 τiqi

9: wk+1 ← FT rk+1

10: sk+1 ← Fwk+1

11: for i = 0, 1, . . . , k do

12: βi ← −qT
i sk+1/δi

13: end for

14: pk+1 ←
∑k

i=0 βipi + wk+1

15: qk+1 ←
∑k

i=0 βiqi + sk+1

16: δk+1 ← qT
k+1qk+1

17: if δk+1 = 0 then ⊲ Use condition “δk+1 < tolerance” in practice
18: δk+1 ← 1, pk+1 ← 0N , qk+1 ← 0M+K

19: end if

20: Exit loop if ‖uk+1 − uk‖2/‖uk‖2 ≤ target accuracy
21: end for

3. Convergence Analysis. Convergence properties of the ADMM were studied in many
publications and are well known. However, here we provide a self-contained proof of conver-
gence for Algorithm 1 that mostly follows the presentation of [6]. Later, we use this result to
study the convergence of Algorithm 3.

Theorem 3.1. Assume that M ≥ N , operators A, B are maximum rank, and

(3.1)
u = u∗,

z = z∗ = Bu∗,

is the unique solution of problem (1.8). Assume that a vector b∗ is defined as

(3.2) b∗ = µ∗/λ,

where µ∗ is the vector of Lagrange multipliers for the equality constraint in (1.8). Algorithm 1
then converges to this solution if λ > 0, that is,

(3.3) uk → u∗, zk → z∗, bk → b∗, k → ∞.

Proof. Problem (1.8) has a convex objective function and equality constraints, hence
(3.1,3.2) is a saddle point of its Lagrangian (1.9) [7]. Substituting zk+1,uk+1 from Algorithm 1,
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Algorithm 3 Compressive Conjugate Directions for (1.1)

1: u0 ← 0N , z0 ← 0K ; b0 ← 0K , v0 ←
[ √

αd√
λ (z0 + b0)

]

2: p0 ← FTv0, q0 ← Fp0, δ0 ← qT
0 q0

3: for k = 0, 1, 2, 3, . . . do
4: for i = 0, 1, . . . , k do

5: τi ← qT
i vk/δi

6: end for

7: uk+1 ←
∑k

i=0 τipi

8: zk+1 ← shrink {Buk+1 − bk, 1/λ}
9: bk+1 ← bk + zk+1 −Buk+1

10: vk+1 ←
[ √

αd√
λ (zk+1 + bk+1)

]

11: rk+1 ← vk+1 −
∑k

i=0 τiqi

12: wk+1 ← FT rk+1

13: sk+1 ← Fwk+1

14: for i = 0, 1, . . . , k do

15: βi ← −qT
i sk+1/δi

16: end for

17: pk+1 ←
∑k

i=0 βipi + wk+1

18: qk+1 ←
∑k

i=0 βiqi + sk+1

19: δk+1 ← qT
k+1qk+1

20: if δk+1 = 0 then ⊲ Use condition “δk+1 < tolerance” in practice
21: δk+1 ← 1, pk+1 ← 0N , qk+1 ← 0M+K

22: end if

23: Exit loop if ‖uk+1 − uk‖2/‖uk‖2 ≤ target accuracy
24: end for

we have

(3.4)

L0 (z
∗,u∗,µ∗) ≤ L0 (zk+1,uk+1,µ

∗) ⇐⇒
p∗ = ‖Bu∗‖1 +

α

2
‖Au∗ − d‖22 = ‖z∗‖1 +

α

2
‖Au∗ − d‖22 ≤

‖zk+1‖1 +
α

2
‖Auk+1 − d‖22 + µ∗T (zk+1 −Buk+1) =

pk+1 + µ∗T (zk+1 −Buk+1) = pk+1 + λb∗T (zk+1 −Buk+1) ,

where p∗ is the optimal value of the objective function and pk+1 is its approximation at
iteration k of the algorithm. Inequality (3.4) provides a lower bound for the objective function
estimate pk+1. Step 4 of the algorithm is equivalent to

(3.5) αATAuk+1 + λBTBuk+1 = αATd+ λBT (zk + bk) .

Substituting the expression for bk from steps 6 into (3.5), we obtain

(3.6) αATAuk+1 = αATd+ λBT (zk − zk+1 + bk+1) .
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Equality (3.6) is equivalent to

(3.7) uk+1 = argmin
α

2
‖Au− d‖22 − λ (zk − zk+1 + bk+1)

T
Bu.

Substituting uk+1 and u∗ into the right-hand side of (3.7), we obtain

(3.8)

α

2
‖Auk+1 − d‖22 ≤

α

2
‖Au∗ − d‖22 +

λ (zk − zk+1 + bk+1)
T
B (uk+1 − u∗) .

Step 5 is equivalent to

(3.9)
0 ∈ ∂z‖z‖1 + λ (zk+1 −Buk+1 + bk) = ∂z‖z‖1 + λbk+1,

zk+1 = argmin
{

‖z‖1 + λbT
k+1z

}

,

where we used the expression for bk from step 6. Substituting z = zk+1 and z = z∗ into the
right-hand side of the second line of (3.9), we obtain

(3.10) ‖zk+1‖1 ≤ ‖z∗‖1 + λbT
k+1 (z

∗ − zk+1) .

Adding (3.8) and (3.10), we get

(3.11)
pk+1 ≤ p∗ + λbT

k+1 (z
∗ − zk+1)+

λ (zk − zk+1 + bk+1)
T
B (uk+1 − u∗) ,

an upper bound for pk+1. Adding (3.4) and (3.11), we get

(3.12)
0 ≤ λb∗T (zk+1 −Buk+1) + λbT

k+1 (z
∗ − zk+1)+

λ (zk − zk+1 + bk+1)
T
B (uk+1 − u∗) ,

or after rearranging,

(3.13)
0 ≤ λ (b∗ − bk+1)

T (zk+1 −Buk+1) − λ (zk − zk+1)
T (zk+1 −Buk+1) +

λ (zk − zk+1)
T (zk+1 − z∗) .

We will now use (3.13) to derive an upper estimate for

‖bk − b∗‖22 + ‖zk − z∗‖22.
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Using step 6 of Algorithm 1 for the first term in (3.13) and introducing ρk+1 = zk+1−Buk+1,
we get

(3.14)

λ (b∗ − bk+1)
T
ρk+1 =

λ
(

b∗ − bk − ρk+1

)T
ρk+1 = λ (b∗ − bk)

T
ρk+1 − λ‖ρk+1‖22 =

λ (b∗ − bk)
T (bk+1 − bk)−

λ

2
‖ρk+1‖22 −

λ

2
‖ρk+1‖22 =

λ (b∗ − bk)
T (bk+1 − bk)−

λ

2
‖ρk+1‖22 −

λ

2
(bk+1 − bk)

T (bk+1 − bk) =

− λ (bk − b∗)T [(bk+1 − b∗)− (bk − b∗)]− λ

2
‖ρk+1‖22−

λ

2
[(bk+1 − b∗)− (bk − b∗)]T [(bk+1 − b∗)− (bk − b∗)] =

λ

2
‖bk − b∗‖22 −

λ

2
‖bk+1 − b∗‖22 −

λ

2
‖ρk+1‖22.

Substituting (3.14) into (3.13), we obtain

(3.15)

0 ≤ λ

2
‖bk − b∗‖22 −

λ

2
‖bk+1 − b∗‖22 −

λ

2
‖ρk+1‖22 − λ (zk − zk+1)

T
ρk+1 +

λ (zk − zk+1)
T (zk+1 − z∗) =

λ

2
‖bk − b∗‖22 −

λ

2
‖bk+1 − b∗‖22 −

λ

2
‖ρk+1‖22 − λ (zk − zk+1)

T
ρk+1 +

λ (zk − zk+1)
T [(zk+1 − zk) + (zk − z∗)] =

λ

2
‖bk − b∗‖22 −

λ

2
‖bk+1 − b∗‖22 −

λ

2
‖ρk+1‖22 − λ (zk − zk+1)

T
ρk+1 −

λ (zk − zk+1)
T (zk − zk+1) + λ (zk − zk+1)

T (zk − z∗) =

λ

2
‖bk − b∗‖22 −

λ

2
‖bk+1 − b∗‖22 −

λ

2

(

zk − zk+1 + ρk+1

)T (

zk − zk+1 + ρk+1

)

−
λ

2
‖zk − zk+1‖22 + λ (zk − zk+1)

T (zk − z∗) =

λ

2
‖bk − b∗‖22 −

λ

2
‖bk+1 − b∗‖22 −

λ

2
‖zk − zk+1 + ρk+1‖22 −

λ

2
‖zk − zk+1‖22 +

λ [(zk − z∗)− (zk+1 − z∗)]T (zk − z∗) =

λ

2
‖bk − b∗‖22 −

λ

2
‖bk+1 − b∗‖22 −

λ

2
‖zk − zk+1 + ρk+1‖22 −

λ

2
‖ (zk − z∗)− (zk+1 − z∗) ‖22 + λ [(zk − z∗)− (zk+1 − z∗)]T (zk − z∗) =

λ

2
‖bk − b∗‖22 −

λ

2
‖bk+1 − b∗‖22 −

λ

2
‖zk − zk+1 + ρk+1‖22 −

λ

2
‖zk+1 − z∗‖22 +

λ

2
‖zk − z∗‖22,
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yielding

(3.16)

λ

2
‖zk − zk+1 + ρk+1‖22 ≤

λ

2

(

‖zk − z∗‖22 + ‖bk − b∗‖22
)

− λ

2

(

‖zk+1 − z∗‖22 + ‖bk+1 − b∗‖22
)

.

Expanding the left-hand side of (3.16), we obtain

(3.17)

λ

2

(

‖zk − zk+1‖22 + 2 (zk − zk+1)
T
ρk+1 + ‖ρk+1‖22

)

≤
λ

2

(

‖zk − z∗‖22 + ‖bk − b∗‖22
)

− λ

2

(

‖zk+1 − z∗‖22 + ‖bk+1 − b∗‖22
)

.

Let us prove that the middle term in the left-hand side of (3.17) is non-negatve,

0 ≤ (zk − zk+1)
T
ρk+1 = (zk − zk+1)

T (bk+1 − bk)

where we used step 6 of Algorithm 1. Indeed, since zk+1 minimizes (1.16) with u = uk+1,
using the convexity of L1 norm, we have for z = zk+1,

(3.18)
∂z

λ

2
‖z −Buk+1 + bk‖22 = λ (z−Buk+1 + bk) ∈ −∂‖z‖1 ⇒

‖zk+1‖1 − ‖zk‖1 ≤ (zk − zk+1)
T (zk+1 −Buk+1 + bk) = (zk − zk+1)

T
bk+1.

Similarly, since zk minimizes (1.16) for u = uk and b = bk−1, for z = zk we have

(3.19)
∂z

λ

2
‖z−Buk + bk−1‖22 = λ (z−Buk + bk−1) ∈ −∂‖z‖1 ⇒

‖zk‖1 − ‖zk+1‖1 ≤ (zk+1 − zk)
T (zk −Buk + bk−1) = (zk+1 − zk)

T
bk.

In both (3.18) and (3.19) we used step 6 of Algorithm 1 and the fact that for any convex
function f(x)

f(x0) + ξT (x− x0) ≤ f(x) ⇔ f(x0)− f(x) ≤ −ξT (x− x0) , if ξ ∈ ∂f(x0),

where ∂ is subgradient [34]. Summing (3.18) and (3.19) we get

(3.20) 0 ≤ (zk − zk+1)
T (bk+1 − bk) .

From (3.20) and (3.17), we have

(3.21)
‖zk − zk+1‖22 + ‖ρk+1‖22 ≤
(

‖zk − z∗‖22 + ‖bk − b∗‖22
)

−
(

‖zk+1 − z∗‖22 + ‖bk+1 − b∗‖22
)

,

or

(3.22)
‖zk+1 − z∗‖22 + ‖bk+1 − b∗‖22 ≤
‖zk − z∗‖22 + ‖bk − b∗‖22 − ‖zk+1 − zk‖22 − ‖ρk+1‖22.
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From (3.22) we can see that the sequence ‖zk − z∗‖22 + ‖bk − b∗‖22 and consequently zk and
bk are bounded. Summing (3.21) for k = 0, 1, . . . ,∞, we obtain convergence of the series

(3.23)

∞
∑

k=0

{

‖zk − zk+1‖22 + ‖ρk+1‖22
}

≤ ‖z0 − z∗‖22 + ‖b0 − b∗‖22.

From (3.23) follows

(3.24) zk − zk+1 → 0, zk −Buk → 0, k →∞.

Now using (3.11) we obtain

(3.25)

pk+1 − p∗ ≤ λbT
k+1 (z

∗ − zk+1) + λ (zk − zk+1 + bk+1)
T
B (uk+1 − u∗) =

λbT
k+1 (zk − zk+1) + λbT

k+1 (z
∗ − zk) +

λ (zk − zk+1)
T
B (uk+1 − u∗) + λbT

k+1B (uk+1 − u∗) =

λbT
k+1 (zk − zk+1) + λ (zk − zk+1)

T
B (uk+1 − u∗) +

λbT
k+1 (z

∗ − zk) + λbT
k+1B (uk+1 − u∗) =

λbT
k+1 (zk − zk+1) + λ (zk − zk+1)

T
B (uk+1 − u∗) +

λbT
k+1 (Buk+1 − zk+1 + zk+1 − zk + z∗ −Bu∗) → 0, k →∞,

where the right-hand side of (3.25) converges to zero because of (3.24), boundedness of zk and
bk and z∗ = Bu∗. Likewise, from (3.4) we have

(3.26) p∗ − pk+1 ≤ λb∗T (zk+1 −Buk+1) → 0, k →∞.

Combining (3.25) and (3.26) we obtain pk → p∗—i.e., value of the objective function estimate
at iteration k converges to the true minimum as k →∞. From the bounded sequence uk ∈ R

N

we can extract a convergent subsequence

(3.27) uki → u∗∗.

Because our objective function is continuous, u∗∗ is a solution of (1.1) and (1.8). However, if
A is maximum rank the objective function of (1.1) is strictly convex, hence u∗ = u∗∗. The
sequence uk must converge to u∗ because otherwise we would be able to extract a subsequence
convergent to a different limit and repeat the above analysis.

And finally, to prove that bk → b∗, we see that from the Karush-Kuhn-Tucker (KKT)
conditions [7] for (1.8) we have

(3.28) αAATu∗ = ATd + λBTb∗.

Passing (3.6) to limit as k → ∞, using (3.24) and replacing bk+1 with a convergent subse-
quence as necessary, we get

(3.29) αAATu∗ = ATd + λBT limbk.
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Since B is maximum rank, rankB = K ≤ N , (3.29) means that limbk = b∗.
Note that our proof does not depend on the selection of starting values for u0, z0 and b0,

and this fact will be used later on in proving the convergence of Algorithm 3. Before we study
convergence properties of Algorithm 3, we prove one auxiliary result.

Theorem 3.2. Algorithm 3 constructs a sequence of subspaces of RN spanning expanding
sets of conjugate directions,

(3.30)
Sk = span {p0,p1, . . . ,pk} , k = 0, 1, 2, . . .

S0 ⊆ S1 ⊆ S2 ⊆ . . . ⊆ Sk ⊆ . . .

such that

(3.31) lim
k→∞

Sk = S ⊆ R
N .

Under the assumptions of Theorem 3.1, solution of the constrained optimization problem

(3.32)

‖z‖1 +
α

2
‖Au− d‖22 → min,

z = Bu,

u ∈ S.

matches the solution of (1.8).
Proof. If S = R

N statement of the theorem is trivial, so we assume that dimS < N . Since
our problem is finite-dimensional, the limit (3.31) is achieved at a finite iteration,

(3.33) ∃k1 ∀k ≥ k1 : Sk ≡ S.

steps 4-7 of Algorithm 3 are equivalent to projecting the solution of the system of normal
equations (2.4) onto the space Sk. If pk+1 = 0 in steps 20-22, then the right-hand side of (2.4)
for any k ≥ k1 can be represented as a linear combination of vectors from Sk1 ≡ S. Steps 8 and
9 of Algorithm 3 are equivalent to steps 5 and 6 of Algorithm 1. Step 10 prepares the right-
hand side of (2.4) for the minimization in step 4 of Algorithm 1 for iteration k+ 1. However,
since the right-hand side of (2.4) is a linear combination of vectors p0,p1, . . . ,pk that span
Sk ≡ S, steps 4-7 of Algorithm 3 are equivalent to the exact solution of the unconstrained
minimization problem in step 4 of Algorithm 1. Hence, starting from iteration k1 the two
algorithms become equivalent. From Theorem 3.1 and

∀k ≥ k1 : uk+1 ∈ S

follows that the solution of (3.32) coincides with that of (1.8).
Convergence of Algorithm 3 now becomes a trivial corollary of theorems 3.1 and 3.2.
Theorem 3.3. Under the assumptions of Theorem 3.1, Algorithm 3 converges to the unique

solution (3.1) of problem (1.8), and (3.3) holds.
Proof. In the proof of Theorem 3.2 we have demonstrated that starting from k = k1

defined in (3.33) Algorithm 3 is mathematically equivalent to Algorithm 1 starting from an
initial approximation uk1−1, zk1−1 and bk1−1. Convergence of Algorithm 1 does not depend on
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these starting values, hence Algorithm 3 converges to the same unique solution as Algorithm 1
and (3.3) holds.

The result of Theorem 3.3 indicates that our Compressive Conjugate Directions method
matches the ADMM in exact arithmetic after a finite number of iterations, while avoiding
direct inversion of operator A. This obvously means that the (worst-case) asymptotic conver-
gence rate of Algorithm 3 matches that of the ADMM and is O(1/k) [24].

4. Limited-memory Compressive Conjugate Directions Method. Algorithm 3 (that we
call “unlimited-memory” Compressive Conjugate Directions Method) requires storing all of
the previous conjugate directions (2.6) because in step 7 the algorithm computes the expansion

(4.1) uk+1 =

k
∑

i=0

τipi,

of these solution approximations with respect to all conjugate direction vectors (2.6) at each
iteration. It is a consequence of changing right-hand sides of the normal equations system
(2.1) that all of the coefficients of expansion (4.1) may require updating. However, in a
practical implementation we may expect that only the last m+ 1 expansion coefficients (4.1)
significantly change, and freeze the coefficients

τi, i < k −m

at and after iteration k. This approach requires storing up to 2m+ 2 latest vectors

(4.2) pk,pk−1, . . . ,pk−m, qk,qk−1, . . . ,qk−m.

A “limited-memory” variant of the method is implemented in Algorithm 4 that stores vectors
(4.2) in a circular first-in-first-out buffer. An index variable j points to the latest updated
element within the buffer. Once j exceed the buffer size for the first time and is reset to point
to the head of the buffer, a flag variable cycle is set, indicating that a search direction is over-
written at each subsequent iteration of the algorithm. The projection of the current solution
iterate onto the old vector τjpj (now to be overwritten in the buffer) is then accumulated in a
vector ũ; the corresponding contribution to the predicted data equals τjqj and is accumulated
in a vector ṽ,

(4.3) ũ =

k−m−1
∑

i=0

τipi, ṽ =

k−m−1
∑

i=0

τiqi.

Contributions (4.3) to the solution and predicted data from the discarded vectors (2.6) are
then added back to the approximate solution and residual in steps 8 and 12 of Algorithm 4.

4.1. Trade-off between the number of iterations and problem condition number. In
practical implementations of the ADMM when the operator A does not lend itself to direct
solution methods, an iterative method can be used to solve the minimization problem in step
4 of Algorithm 1 [22]. Algorithm 5, representing such an approach, uses a fixed number of
iterations Nc of CGNE in step 4. At each iteration of the ADMM conjugate gradients are
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Algorithm 4 Limited-Memory Compressive Conjugate Directions Method for (1.1)

1: m ← memory size, ũ ← 0N , ṽ ← 0N+K , j ← 0, cycle← .false.

2: u0 ← 0, z0 ← 0K ; b0 ← 0K , v0 ←
[ √

αd√
λ (z0 + b0)

]

3: p0 ← FTv0, q0 ← Fp0, δ0 ← qT
0 q0

4: for k = 0, 1, 2, 3, . . . do
5: for i = 0, 1, . . . ,min(k,m) do
6: τi ← qT

i (vk − ṽ)/δi
7: end for

8: uk+1 ← ũ +
∑min(k,m)

i=0 τipi

9: zk+1 ← shrink {Buk+1 − bk, 1/λ}
10: bk+1 ← bk + zk+1 −Buk+1

11: vk+1 ←
[ √

αd√
λ (zk+1 + bk+1)

]

12: rk+1 ← vk+1 −
∑min(k,m)

i=0 τiqi − ṽ

13: wk+1 ← FT rk+1

14: sk+1 ← Fwk+1

15: for i = 0, 1, . . . ,min(k,m) do
16: βi ← −qT

i sk+1/δi
17: end for

18: j ← j + 1
19: if j = m+ 1 then

20: j ← 0, cycle← .true.
21: end if

22: if cycle then

23: ũ ← ũ + τjpj

24: ṽ ← ṽ + τjqj

25: end if

26: pj ←
∑min(k,m)

i=0 βipi + wk+1

27: qj ←
∑min(k,m)

i=0 βiqi + sk+1

28: δj ← qT
j qj

29: if δj = 0 then ⊲ Use condition “δj < tolerance” in practice
30: δj ← 1, pj ← 0N , qj ← 0M+K

31: end if

32: Exit loop if ‖uk+1 − uk‖2/‖uk‖2 ≤ target accuracy
33: end for

hot-restarted from the previous solution approximation uk. For comparison purposes we will
refer to this method as restarted Conjugate Gradients or RCG.

Note that Algorithm 5 with Nc = 1 performs a single step of gradient descent when solving
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Algorithm 5 ADMM and hot-restarted CG (RCG)

1: u0 ← 0N , z0 ← 0K , b0 ← 0K , Nc ← prescribed number of CG iterations
2: p0 ← FTv0, q0 ← Fp0

3: for k = 0, 1, 2, 3, . . . do
4: Solve

uk+1 ← argmin

{

λ

2
‖zk −Bu+ bk‖22 +

α

2
‖Au− d‖22

}

,

starting from uk and using Nc iterations of CGNE.
5: zk+1 ← shrink {Buk+1 − bk, 1/λ}
6: bk+1 ← bk + zk+1 −Buk+1

7: Exit loop if ‖uk+1 − uk‖2/‖uk‖2 ≤ target accuracy
8: end for

the following intermediate least-squares minimization problem in step 4,

(4.4) uk+1 = argmin
α

2
‖Au− d‖22 +

λ

2
‖zk − Bu+ bk‖22.

The performance of Algorithm 5 depends on the condition number of the leasts-squares prob-
lem (4.4) [40]: for well-conditioned problems only a small number of conjugate gradients iter-
ations Nc may achieve a sufficiently accurate approximation to uk+1. The condition number
of (4.4) depends on properties of operators A and B, as well as the value of λ. In applications
with a simple modeling operator A, such as is the case in denoising with A = I, a value of
λ may be experimentally selected so as to reduce the condition number of (4.4). However, a
trade-off may exist between the condition number of (4.4) and the number of ADMM iterations
in the outer loop (Step 3) of Algorithm 1: well-conditioned interim least-squares problems may
result in a significantly higher number of ADMM iterations. Such a trade-off is a well-known
phenomenon in applications of the Augmented Lagrangian Method of Multipliers for smooth
objective functions, see, e.g., [19]. For example, large values of λ in (1.15) more strongly
penalize violations of the equality constraint, as in the Quadratic Penalty Function Method
[30] with a larger penalty and a more ill-conditioned quadratic minimization. Of course, in the
case of ADMM applied to (1.1), a non-smooth objective function, arbitrary and potentially
ill-conditioned operator A, and (most importantly) alternating splitting minimization of the
modified Augmented Lagrangian (1.15)6 complicate the picture. In fact, for an arbitrary A,
the condition number of (4.4) is not always an increasing function of λ. Some of the numerical
examples described in the following subsections exhibit this trade-off between the condition
number of the intermediate least-squares problem (4.4) and the number of ADMM iterations:
the better the condition-number of (4.4), the more ADMM iterations are typically required.
The main advantage of our Compressive Conjugate Directions approach implemented in Algo-
rithms 3 and 4 is that information on the geometry of the objective function (4.4) accumulates
through external ADMM iterations thus potentially reducing the amount of effort required
to perform minimization of (4.4) at each step. Since our objective is a practical implementa-
tion of the ADMM for (1.1) with computationally expensive operators A, the overall number

6“modified” because of the added constant term λ/2‖bk‖
2

2
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of operator A and AT applications required to achieve given accuracy will be the principal
benchmark for measuring the performance of various algorithms.

5. Applications. In this section we apply the method of Compressive Conjugate Direc-
tions to solving L1 and TV-regularized inversion problems for several practical examples.

5.1. Image Denoising. A popular image denoising technique for removing short-wavelength
random Gaussian noise from an image is based on solving (1.3) with A = I. Vector d is pop-
ulated with a noisy image, a denoised image is returned in u,

u = ui,j, i = 1, . . . , Ny, j = 1, . . . , Nx,

with an anisotropic TV norm in (1.3) defined by the linear gradient operator

(5.1) ∇u =

[

∇xu

∇yu

]

=





















ui,2 − ui,1
· · ·

ui,Nx − ui,Nx−1

· · ·
u2,j − u1,j
· · ·

uNy,j − uNy−1,j





















, i = 1, . . . , Ny, j = 1, . . . , Nx.

Here, the dimension of the model space is N = Nx×Ny with M = N and K = N −Nx−Ny.
Since operator A = I is trivial, minimization of the number of operator applications in this
problem carries no practical advantage. The only reason for providing this example is to
demonstrate the stability of the proposed Compressive Conjugate Directions method with
respect to choosing a value of λ.

Figure 1(a) shows the true, noise-free 382 × 382 image used in this experiment. Random
Gaussian noise with a standard deviation σ of 15% of maximum signal amplitude was added
to the true image to produce the noisy image of Figure 1(b). All low-wavenumber or “blocky”
components of the noise below a quarter of the Nyquist wavenumber were filtered out, leaving
only high-wavenumber “salt-and-pepper” noise. Parameter α = 10 was chosen experimentally
based on the desired trade-off of fidelity and “blockiness” of the resulting denoised image. The
result of solving (1.3) using Algorithm 5 with λ = 1, one hundred combined applications of
A and AT , and Nc = 1 is shown in Figure 1(d). The result of applying our limited-memory
Conjugate Directions Algorithm 4 for m = 50 is shown in Figure 1(c)7. Note that Nc = 1
means that only a single step of Conjugate Gradients, or a single gradient descent, is made
in step 4 of Algorithm 5. For this choice of λ, problem (4.4) is very well conditioned, with a
condition number of κ = 1.8. A single iteration of gradient descent achieves sufficient accuracy
of minimization (4.4) and for λ = 1 there is no practical advantage in using our method as
both methods perform equally well, see Figure 2(a). In fact, the overhead of storing and using
conjugate directions from previous iterations may exceed the cost of operator A and its adjoint
applications if the latter are computationally cheap. The approximation errors of applying
the limited-memory Compressive Conjugate Directions Algorithm 4 with m = 50 versus Al-
gorithm 5 with Nc = 1, 5, 10 for λ = 102, 103, 104 are shown in Figures 2(a),2(b),2(c),2(d).

7Here, this matches the results for any memory size m > 0 due to a well-conditioned problem (4.4).
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(a) (b)

(c) (d)

Figure 1: (a) Clean image; (b) Noisy image contaminated with Gaussian noise with σ = 15%
of maximum amplitude; (c) Image denoised using Algorithm 4 with α = 10, λ = 1 and
memory size m = 50; (d) Image denoised using Algorithm 5 with α = 10, λ = 1, Nc = 1.

Note that larger values of λ result in increasingly larger condition numbers of (4.4) shown on
top of the plots. The performance of Algorithm 5 here depends on a choice of Nc: increasing
Nc as required to achieve a sufficiently accurate approximate solution of (4.4) results in fewer
available ADMM iterations for a fixed “budget” of operator A and adjoint applications. How-
ever, Algorithm 4 accumulates conjugate directions (2.6) computed at earlier iterations and
requires only one application of the operator and its adjoint per ADMM iteration. Note that
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at iteration steps less than Nc, Algorithm 5 may still outperform Algorithm 4 as it conducts
more Conjugate Gradient iterations per solution of each problem (4.4). However, once the
ADMM iteration count exceeds the largest Nc, and sufficient information is accumulated by
Algorithm 4 about the geometry of the objective function, the Compressive Conjugate Direc-
tions outperforms Algorithm 5. Note that this example does not demonstrate the trade-off

(a) (b)

(c) (d)

Figure 2: Performance of Algorithm 4 with m = 20 versus Algorithm 5 with varying Nc for
(a) λ = 1; (b) λ = 100; (c) λ = 1000; (d) λ = 10000.

between the condition number of (4.4) and the number of ADMM iterations. The reason for
this is that for large λ convergence is achieved relatively quickly within a number of itera-
tions comparable to a number of Conjugate Gradients steps required to solve (4.4). However,
this example demonstrate another feature of the proposed Compressive Conjugate Directions
Method: compared with a technique based on a restarted iterative solution of (4.4), the
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method may be less sensitive to a suboptimal choice of λ.

5.2. Inversion of Dilatational Point Pseudo-sources. In our second example, we demon-
strate our method on a geomechanical inversion problem with a non-trivial forward-modeling
operator A. Here, we are interested in inverting subsurface sources of deformation from noisy
measurements of surface displacements, such as GPS, tilt-meter and InSAR observations.

The forward modeling operator simulates vertical surface displacements in response to
distributed dilatational (e.g. pressure change) sources [38]. Our modeling operator is defined
as

(5.2) Au = d(z), d(z) = c

∫ A

0

Du(ξ)dξ

(D2 + (z − ξ)2)3/2
,

where we assume that u = u(ξ), ξ ∈ [0, A] is a relative pore pressure change along a horizontal
segment [0, A] of a reservoir at a constant depth D, d = d(x), x ∈ [0, A] is the induced
vertical displacement on the surface, and a factor c is determined by the poroelastic medium
properties, and reservoir dimensions. In this example, for demonstration purposes we consider
a two-dimensional model, but a three-dimensional model is studied in subsection 5.3. Operator
(5.2) is a smoothing integral operator that, after discretization and application of a simple
quadrature, can be represented by a dense matrix. Analytical representation of the surface
displacement modeling operator (5.2) is possible for simple homogeneous media; however,
modeling surface displacements in highly heterogeneous media will involve computationally
expensive numerical methods such as Finite Elements [27].

In this experiment we seek to recover a spiky model of subsurface sources shown in Fig-
ure 3(a) from noisy observations of the induced surface displacements shown in Figure 3(b).
Such sparse dilatational pseudo-sources are mathematically equivalent to concentrated reser-

(a) (b)

Figure 3: (a) A spiky true pseudosources; (b) the resulting true (black) and noisy (red) surface
displacements.

voir pressure changes in hydrogeology and exploration geophysics, as well as expanding spher-
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ical lava chambers (the “Mogi model”) in volcanology [38]. We forward-modeled surface
displacements due to the sources of Figure 3(a) using operator (5.2), and, as in our denois-
ing tests, added random Gaussian noise with σ = 15% of the maximum data amplitude.
Prior to adding the noise, all low-wavenumber noise components below a fifth of the Nyquist
wavenumber were muted, leaving only the high-wavenumber noise shown in Figure 3(b).

We set D = .1 km, A = 2 km, c = 10−2 in (5.2), and discretized both the model and
data space using a 500-point uniform grid, N = M = 500. We solve problem (1.2) with
α = 10000, and our objective is to accurately identify locations of the spikes in Figure 3(a)
and their relative magnitudes, carrying out as few applications of operator (5.2) as possible.
Inversion results of using the limited-memory Compressive Conjugate Directions Algorithm 4
with m = 100, ADMM with restarted Conjugate Gradients Algorithm 5 and FISTA of (1.6)
are shown in Figures 4(a),4(b),4(c),4(d) for λ = 0.05, 0.1, 1, 100. In each case one hundred
combined products of operators A and AT with vectors were computed. We used the maxi-
mum FISTA step size of τ = 10−4 in (1.6) computed for operator (5.2). These results indicate
that the Compressive Conjugate Directions method achieves qualitative recovery of the spiky
model at early iterations. Superiority of the new method is especially pronounced when the
intermediate least-squares minimization problem (4.4) is ill-conditioned (see plot tops). The
method retains its advantage after 1000 operator and adjoint applications, as shown in Fig-
ures 5(a),5(b),5(c),5(d). Note that the error plots of the CCD in Figures 6(a),6(b),6(c),6(d)
exhibit a trade-off between the convergence rate and condition number of problem (4.4) dis-
cussed earlier in this subsection 4.1: a more ill-conditioned (4.4) is associated with a faster
convergence rate of the new method.

Figures 7(a),7(b),7(c),7(d) show error plots for the CCD, ADMM with exact minimization
of (4.4), and FISTA. The said trade-off between the convergence rate and condition number
of (4.4) is exhibited by the ADMM. The CCD curves approach the convergence rates of
the ADMM once Algorithm 4 has accumulated enough information about the geometry of the
objective function in vectors (4.2). Note that the advantage of a faster asymptotic convergence
rate of FISTA kicks in only when the ADMM-based methods use values of λ that are not
optimal for their convergence—see Figures 6(d) and 7(d). In this case (4.4) is very well
conditioned, and its adequate solution requires only a single step of gradient descent at each
iteration of the ADMM, depriving conjugate-gradients-based methods of their advantage.
FISTA, being based on accelerating a gradient-descent method, now asymptotically beats the
convergence rates of the other techniques but this happens too late through the iterations
to be of practical significance. In other words, in this particular example FISTA can beat
the ADMM (and CCD) only if the latter use badly selected values of λ. Generalizing this
observation about FISTA and ADMM for problem (1.2) with a general operatorA goes beyond
the scope of our work.

5.3. Inversion of Pressure Contrasts. In this section we apply the Compressive Con-
jugate Gradients method to identify sharp subsurface pressure contrasts in a reservoir from
observations of induced surface displacements. We use a 3-dimensional geomechanical poro-
elastostatic model of pressure-induced deformation based on Biot’s theory [38].

We solve a TV-regularized inversion problem (1.3) with operator B given by (5.1), and
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(a) (b)

(c) (d)

Figure 4: Inversion results for CCD (red), RCG (blue), FISTA (green) after 100 operator
and adjoint applications for (a) λ = .05; (b) λ = 0.1; (c) λ = 1; (d) λ = 100. Note that
FISTA does not use λ and the same FISTA results are shown in all plots but using different
vertical scales. Improving condition number of (4.4) is accompanied by slower convergence.
Compressive Conjugate Directions method most accurately resolves the spiky model at early
iterations, and performs well when (4.4) is ill-conditioned.

operator A given by extension of (5.2)

(5.3) Au = d(x, y), d(x, y) = c

∫ A

0

∫ A

0

Du(ξ, η)dξdη

(D2 + (x− ξ)2 + (y − η)2)3/2
,

where we assume that u = u(ξ, η), (ξ, η) ∈ [−A,A]× [−A,A] is a relative pore pressure change
at a point (ξ, η) of the reservoir at a constant depth D, 2A is the reservoir length and breadth,
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(a) (b)

(c) (d)

Figure 5: Inversion results for CCD (red), RCG (blue), FISTA (green) after 1000 operator
and adjoint applications for (a) λ = .05; (b) λ = 0.1; (c) λ = 1; (d) λ = 100. Note that FISTA
does not use λ and the same FISTA results are shown in all plots but using different vertical
scales. Compressive Conjugate Directions method still retains its advantage in resolving the
spiky model at earlier iterations. Asymptotically faster convergence of FISTA kicks in when
λ = 100 with a well-conditioned (4.4), when the ADMM convergence is slowed—compare with
Figure 7(d).

d = d(x, y), (x, y) ∈ [−A,A] × [−A,A] is the induced vertical displacement at a point (x, y)
on the surface, and a constant factor c is determined by the poroelastic medium properties
and reservoir thickness.

In this experiment, we discretize the pressure and displacement using a 50× 50 grid, with
A = 1.2 km, D = .455 km and c = 5.8515× 103, based on a poroelastic model of a real-world
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(a) (b)

(c) (d)

Figure 6: Convergence curves for CCD (solid red), RCG (dashed), FISTA (solid green) for
(a) λ = .05; (b) λ = 0.1; (c) λ = 1; (d) λ = 100—compare with Figures 5(a),5(b),5(c),5(d).

unconventional hydrocarbon reservoir [28]. We use a least-squares fitting weight α = .1 in
(1.3) to achieve a desirable trade-off between fitting fidelity and blockiness of the inverted
pressure change. The blocky model shown in Figure 8(a) was used to forward-model surface
displacements using operator (5.3). Random Gaussian noise with σ = 0.15% of maximum
data amplitude, muted below a quarter of the Nyquist wavenumber, was added to the clean
data to produce the noisy displacement measurements of Figure 8(b).

Figure 9(a) shows the result of the limited-memory Compressive Conjugate Directions
Algorithm 4 with m = 100, after a total of 100 combined applications of operator A and its
adjoint. For the same number of operator applications, Figure 9(b) shows the best result of
the ADMM with restarted Conjugate Gradients Algorithm 5. The corresponding results after
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(a) (b)

(c) (d)

Figure 7: Convergence curves for CCD (solid red), ADMM with exact solver (blue), FISTA
(green) for (a) λ = .05; (b) λ = 0.1; (c) λ = 1; (d) λ = 100. Limited-memory Compressive
Conjugate Directions with m = 100 achieves convergence rate comparable to ADMM with
exact minimization of (4.4).

1000 applications of A and AT are shown in Figures 9(c) and 9(d), respectively.

The Compressive Conjugate Directions method resolves key model features faster than the
ADMM using iterative solution of (4.4) restarted at each ADMM iteration. This advantage of
our method is particularly pronounced when the intermediate least-squares problem (4.4) is
ill-conditioned—compare Figures 10(a),10(b) with Figures 10(c),10(d). To accurately resolve
the blocky pressure model of Figure 8(a), the Compressive Conjugate Directions technique
requires about a tenth of operator A and adjoint applications compared with Algorithm 5
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(a) (b)

Figure 8: (a) A blocky true pressure model (MPa); (b) the resulting surface displacements
(mm) with added random Gaussian noise with σ = 15% of data amplitude.

when (4.4) is poorly conditioned. And again, as in the previous example, there is a trade-
off between the convergence rate of the Compressive Conjugate Directions and the condition
number of (4.4): values of λ that result in more poorly-conditioned (4.4) yield the fastest
convergence.

6. Discussion. Compressive Conjugate Directions provides an efficient implementation of
the Alternating Direction Method of Multipliers in L1 − TV regularized inversion problems
(1.1) with computationally expensive operators A. By accumulating and reusing information
on the geometry of the intermediate quadratic objective function (4.4), the method requires
only one application of the operator A and its adjoint per ADMM iteration while achieving
accuracy comparable to that of the ADMM with exact minimization of (4.4). The method
does not improve the worst-case asymptotic convergence rate of the ADMM. However, it can
be used for fast recovery of spiky or blocky solution components. The method trades the
computational cost of applying operator A and its adjoint for extra memory required to store
previous conjugate direction vectors (4.2).

Our numerical experiments involving problems of geomechanical inversion demonstrated a
trade-off between the number of ADMM iterations required to achieve a sufficiently accurate
solution approximation, and condition number of the intermediate least-squares problem (4.4).
Understanding the extent to which this phenomenon applies to solving (1.1) with other classes
of modeling operators A requires further analysis.

6.1. Generalizations. The primary focus of this work are L1 − TV regularized inversion
problems (1.1). However, the Steered Conjugate Directions Algorithm 2 can be combined with
the Method of Multipliers to solve more general problems of large-scale equality-constrained
optimization.
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(a) (b)

(c) (d)

Figure 9: Inversion results after (a) 100 iterations (operator and adjoint applications) of
CCD with λ = 10; (b) 100 iterations of RCG with λ = 10; (c) 1000 iterations of CCD with
λ = 10; (d) 1000 iterations of RCG with λ = 10. In all tests, CCD is the limited-memory
Compressive Conjugate Directions method of Algorithm 4; RCG is ADMM with restarted
Conjugate Gradients of Algorithm 5 showing the most accurate model reconstruction among
the outputs for different Nc–see Figures 10(a),10(b),10(c),10(d).

For example, consider the problem

(6.1)

‖Au− d‖22 → min,

Bu− c = 0,

u ∈ R
N , d ∈ R

M , A : RN → R
M , B : RN → R

K ,

where A is a computationally expensive operator. Many “coupled” systems governing two or
more physical parameters can be described mathematically as a constrained problem (6.1).
Of special interest are cases when K ≪ min {N,M}—e.g., large-scale optimization problems
with a localized constraint. Applying the Augmented Lagrangian Method of Multipliers to
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(a) (b)

(c) (d)

Figure 10: Convergence rates for CCD and RCG with various Nc for (a) λ = 5; (b) λ = 10;
(c) λ = 50; (d) λ = 100.

(6.1), after re-scaling the multiplier vector, we get

(6.2)
uk+1 = argmin ‖Au− d‖22 +

λ

2
‖c−Bu+ bk‖22,

bk+1 = bk + c−Buk+1.

As before, the minimization on the first line of (6.2) is equivalent to solving a system of
normal equations with a fixed left-hand side and changing right-hand sides. Combining the
dual-variable updates from (6.2) with Algorithm 2, we get Algorithm 6.

Operator F in Algorithm 6 is given by (2.2) with α = 1. A limited-memory version of
Algorithm 6 is obtained trivially by adapting Algorithm 4. We envisage potential utility of
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Algorithm 6 Steered Conjugate Directions + Method of Multipliers for solving (6.1)

1: u0 ← 0N , b0 ← 0K , v0 ←
[

d√
λ (c+ b0)

]

2: p0 ← FTv0, q0 ← Fp0, δ0 ← qT
0 q0

3: for k = 0, 1, 2, 3, . . . do
4: for i = 0, 1, . . . , k do

5: τi ← qT
i vk/δi

6: end for

7: uk+1 ←
∑k

i=0 τipi

8: bk+1 ← bk + c−Buk+1

9: vk+1 ←
[

d√
λ (c+ bk+1)

]

10: rk+1 ← vk+1 −
∑k

i=0 τiqi

11: wk+1 ← FT rk+1

12: sk+1 ← Fwk+1

13: for i = 0, 1, . . . , k do

14: βi ← −qT
i sk+1/δi

15: end for

16: pk+1 ←
∑k

i=0 βipi + wk+1

17: qk+1 ←
∑k

i=0 βiqi + sk+1

18: δk+1 ← qT
k+1qk+1

19: if δk+1 = 0 then ⊲ Use condition “δk+1 < tolerance” in practice
20: δk+1 ← 1, pk+1 ← 0N , qk+1 ← 0M+K

21: end if

22: Exit loop if ‖uk+1 − uk‖2/‖uk‖2 ≤ target accuracy
23: end for

Algorithm 6 in applications where storing a set of previous conjugate direction vectors (4.2)
is computationally more efficient that iteratively solving the quadratic minimization problem
in (6.2) from scratch at each iteration of the method of multipliers.

The Compressive Conjugate Directions Algorithm 4 can be extended for solving non-linear
inversion problems with L1 and isotropic total-variation regularization. Likewise, the Steered
Conjugate Directions Algorithm 6 can be adapted to solving general equality-constrained non-
linear optimization problems. A nonlinear theory and further applications of these techniques
will be the subject of our next work.
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