AZERBAIJAN REPUBLIC MINISTRY OF EDUCATION

Baku State University

Faculty of Applied Mathematics and Cybernetics
Department of Applied Mathematics

Musa A. Maharramov, Ph.D.
email: musa 'AT' maharramov.com

MATHEMATICAL MODELLING OF A STEADY-STATE
FLOW OF A VISCOUS LIQUID IN A PIPELINE

A mathematical model and software for performing
PC-based pipeline hydraulics simulations.

Baku 2003

Page 1 of 44

Table of Contents

Table Of CONEENES...ciiiieeiiiiiiiiiiiiiiei et 2
INErOAUCEION . uuuiiieiiiiei i eeeeeeeas 3
Chapter I. Mechanics of Flow in Hydrocarbon Pipelines...........ccccceveeeiiveneiennnn.. 4
1. Governing EqQUatiONS.uiieeeiiiiiiiiiiiiieeiiieeeieeeieeieeee e 4
2. ViscOUS TaqUid .oevuuiiieeniiiiiiiiiiiiiiiiiiiie i 7
Chapter II. Mathematical Model of a Steady-state Flow through a Steel
PAIDEINC. ittt ee e eeeeens 10
3. PIDEINC. it 10
A, MOAEL ..ot 12
Chapter ITI. Flow Simulation.......cceeeeiiiiiueiiiiiiiiieiiiiiieeiiieeeiieeeieeeiieeeieeeenn, 16
5. Interfaces and OUEPUL...ccivueiiiiuiiiiiiiiiiiiieeieeeeee e 16
6. Location of PS and PRS....cccouiiiiiuuiiiiiiiiieiiiieeeeieeeeeeeeeieeeeeee 16
Appendix A. Source Code of the Data Modul€.......ccovvvueeeiiieniiieniiiieiiiieiinnnnnns 23
Appendix B. Source Code of the Computations Modul€......ccceevveviivenviieennnnnnnne. 29
REIOTOINCES. o iiiiiiiiiiiiieeeiie ettt 44

Page 2 of 44

Introduction

In this work, a mathematical model is presented of a steady-state flow of a viscous liquid-
phase hydrocarbon in a steel pipeline. The model has been used in developing computer
software and successfully tested in industrial environment.

Chapter I presents the mathematical foundation of the theory developed in the subsequent
parts of the work and contains all the principal governing equations.

Chapter II formally introduces the model and adapts the governing equations to its specifics.
Chapter III describes computer software that implements the proposed model.

Appendices A and B contain detailed source code of the application.

Page 3 of 44

Chapter I. Mechanics of Flow in Hydrocarbon
Pipelines

This Chapter presents governing equations used in subsequent parts of the work for
developing mathematical model of a steady-state flow. The principal objective of this work
being the development of computer software for simulating flow of liquid hydrocarbons
through steel pipelines, material presented in this Chapter primarily concerns the flow of a
viscous incompressible liquid. However, some of the developed apparatus applies to other
media as well - e.g., compressible viscous hydrocarbon gas.

1. Governing Equations

Let us consider the flow of a continuous medium (continuum) in the 3-dimensional Euclidean
space. It is assumed that the initial position of all particles of the medium is known and the
process is described by specifying a velocity field v' =V' (Xl, X2, x3, t),i =1,2,3 where
V= (vl, V2, v3) is the velocity of the particle that has Euler coordinates x*, x*, x> at the
moment of time t (i.e., the particle occupying the geometrical point with coordinates

x', x?, x> at the moment t.) It is further assumed that the continuum is characterised by a
spatial density o = p(xl, X2, x°, t) and internal energyU = U(xl, x?,x°, t) . The last
quantity is characteristic of the total energy of molecules in a unit mass of the medium -
i.e., the internal energy is the sum of the total kinetic energy of the molecules and potential
energy of their interaction. Note that in a medium where the potential energy of molecule
interaction can be neglected (e.g., in the perfect gas) the internal energy is equal to the total
kinetic energy of molecules. Another parameter of the medium is temperature which is
proportional to the mean kinetic energy of the molecules. In practice the inner energy can
be a function of temperature and density and/or other parameters that will be described later

in this Chapter, however, a particular functional dependence is determined by the medium in
question. For instance,

T
U(T, o ZJ'CV(T)dT —ap+const

for a Van der Vaalse gas and

UlT, p) =UlT) =jcv<T)dT+U(TO>

0

(1)

for the perfect gas and incompressible fluid, wherein G, (T) is the thermal capacity/specific

heat of the medium (at constant density if the internal energy does depend on density).
Throughout this work we will use formula (1) that establishes relationship between the
internal energy and temperature.

Page 4 of 44

Let us denote via V(t) the domain occupied by an infinitesimally small particle of the

continuum at a moment t. So long as there occurs no external mass transfer, the particle mass
is conserved and the following conservation of mass equation holds:

%1 =dit‘f[)/dxl, x>, XS,)dX =0 (in Euler coordinates)
or
dm_d (&, 82,8, t)
d =i, e sl e s e s aegTls,

& =0
L]

where Euler coordinates at an arbitrary fixed moment t =t" are used as Lagrange

coordinates. Differentiating the integral expression we obtain the following continuity
equation:

6p(x1, X%, x3, t)
ot

+div{ov) = p, +Di[/a’i] =0.
)

Any two adjacent infinitesimal volumes of a continuum act upon each other, and the force of
their interaction is a surface force proportional to the contact surface between them. If the
surface force acting opposite to the direction of (not necessarily parallel to) the unit normal n

to a surface is denoted P,, then the momentum balance equation for the above particle can
be spelled out like this:

iVJ' x', X3, x3, t)v(xl, x3, x3, t)dx ZVJ',dxl, x3, x5, t)F(Xl, x®, x>, t)dx+ J‘pnda
dt 4, t) =)= (1)

Where F stands for the density of external mass forces (internal mass forces are negligible). It
can be easily demonstrated that p, = p, = p’ n; where pY is the contravariant stress

tensor. Using Gauss integral formula and equation (2) the above equation can be reduced to
the following dirrential form

or in differential form:

' i O ‘ o
p%zp%+vfﬂjv’%=,d7’+ljjp“,z=1,2,3 3)

System of equations (3) is referred to as Euler Equations.

For the total (kinetic plus internal) energy of the particle we have:

2
i‘,[p%f +v %x =VJ'/d:"'VdX+ J'andO__ J-qheall]do-
dt4," O 20 ‘) =(t)Zov (t) =(t)=ov (t)

Page 5 of 44

- in the above equation we assume that any change of the total energy of the particle is the
effect of work performed by external mass forces, work of internal stress (e.g., surface

forces) and heat transfer ((.., stands for the heat flow vector). Using Gauss integral
formula we obtain:

iU dvO YU dv O @U i ; U - y .
—+——[F P —+—V[F + +v OV L=y, +0;| pYv; | —0O. g/
p@dt dt 2§ p@dt dt V’Q p@dt Eat viEsv EIE Vi J’p Vz] j dheat

(4)

By virtue of (3) we get:

AN T = R j
P—V; = pl+— +VJ|:|jvl %i :,d—'«"vi +ViDj le (5)

dt Eot

Subtracting (5) from (4) and using (1) we arrive at the following equation for internal energy:

dU
pP—

dT or i T j
- ZWV(T)E :mV(T)%"'VJDjTE: p'0;v; =0, Gogr-

(6)

According to Fourier Law for the heat flow we have q.,,,, =& T wherein K is the thermal
conductivity coefficient of the medium. Hence (6) takes the form of a heat equation:

mV(T)% +ijjT§= p’O,v; +k0,0T .
(7)

Note that (7) assumes that the medium is insulated from the ambient and no heat transfer
occurs across the boundary. Otherwise, near the boundary of the domain where the medium
is contacting ambient environment, the heat flow will be the combination of the flow within
the medium and flow through the boundary (see Fig. 1)

Aheqt =K gradT +Kboundan@)oundar}[T _Tambineanoundary
(8)

where T mpinet is the ambient temperature outside of the domain boundary, Mpoundary is

the external unit normal to the boundary, Aboundary is the heat conductivity of the boundary

(that is the amount of heat transferred per second per Calvin from inside the domain where
the flow is taking place, through whatever boundary layer and thence across the boundary

into the ambient), Soundary is the single-layer potential.

Page 6 of 44

—]75' 0 'uw'.ﬁ{ﬂ fbl

7 :
L —F the flow 15 wilhis
.-' ".__. . -. .. \\\ J'EL-,H\ C"I':Wﬂ'.n
L

11£d'k+ -F'L':'w wlr’m E I."

-—tw ﬂ.rasl) - % [Ic:‘-'.'l. j"['.:-L,,. ““GJ!’“

{lu.g Fownday '1

\ - __Pf"f-f 1-*#.\-..! |,MHJ. [" ’Tma,.h,]

Fig.1. Heat transfer inside the flow and through the boundary

%

2. Viscous Liquid

In this section we will spell out the governing equations presented in Section 1 for particular
cases of viscous incompressible fluid and viscous compressible gas. Furthermore, we will
explain the physical meaning of the right-hand side of the equation (6).
In the viscous liquid (gas) the stress tensor yields itself to the following representation:
9
, , 1 .
where p is a scalar function referred to as pressure, and €,; = E(Dlvk + Elkvl) is the

deformation rate tensor. If all the components of the contravariant (4,0) tensor AUk! are 0
then (9) is the stress tensor of the perfect gas/liquid.

If the studied liquid is isotropic (e.g., its properties are invariant of the spatial rotations and
reflections) then the contravariant tensor AUkl can be shown to be determined by two
independent parameters and the strain tensor to have the following form:

P! =—pg’ +Ag"divv+2ug™ g’ ey =—pg’ + Ag" O +219™ g' ey
(10)

or

p’ =-pg’ +Ag" Oy V" + 21
(an

where £4 A are dynamic viscosity and Lamé coefficient respectively. Substituting (11) into

(3) we obtain the following Navier-Stokes equations governing the flow of a viscous
compressible liquid:

Page 7 of 44

. ; ' O . '

pﬂ :p%l +v/ OV = &' —gradp +(A+g)graddivv + i ¥V, i =1,2,3
L 24 =

(12)

that are reduced into

i . N , ‘
p%l +Vv/[Ov = &F' —gradp + i FO 0V, i =1,2,3,
=2 =
(13)

for an incompressible viscous liquid.

The term (/\ +,u) graddivv +;ﬂkEIkvi, i =1,2,3 in (12, 13) quantifies the effect of
internal “friction” between different layers of the liquid flowing at different speeds - hence
the derivatives of velocity in (12) - and the term pY LJv; in (6) quantifies the effect of
stress on the internal energy. The latter effect can be further elaborated as follows:

and
dU dar [oT - O ij j j
Par = pCV(T)E = pCV(T)% +VJDJTEI=—DQUDJ-V1 +770,v; =0 @eqt
(15)
’ : , __dpldt j d
By virtue of (2) we obtain g";v; =00y, =V =— Pl , hence — pg’[;v; =?p)_/?
and
dU dli/p 1 4 1 j
=— +—7'0,v, —— 0, g}
dt p dt 0 Jvl P JCZheat (16)

Note that for a reversible process in a perfect inviscid compressible liquid we would have (see
[LS])

aU__ dl/p,5.ds
dt dt dt

(17)

where s is the entropy. Therefore, assuming that (17) holds for viscous liquids as well (Gibbs
Formula), we obtain:

7 ds

_1 1
dt p

/0,y 5 O Great (18)

1 .
The term 7) 7Y 00;v; quantifies the amount of kinetic energy converted into heat due to

viscosity and (14) is the amount of kinetic energy converted into internal energy.

Page 8 of 44

The presented mathematical model fails to take into account the effect of friction between the
medium and boundary of the domain where the motion is taking place. Such a friction would
result in an irreversible production of heat, contributing a positive term to the right-hand
sides of equations (16) and (18), and resulting in an equal decrease of the kinetic and/or
potential energy in (12) (Note that the production of heat due to friction does not always
result in a corresponding decrease of the kinetic energy - decrease of the potential energy
(e.g., pressure) may compensate the loss). The next Chapter presents a mathematical model
of the flow of a viscous liquid in a steel pipeline that includes the effect of friction against
pipe walls.

Page 9 of 44

Chapter Il. Mathematical Model of a Steady-state
Flow through a Steel Pipeline

In this Chapter the governing equations introduced in Chapter I are adapted to a
mathematical model of the flow of a viscous incompressible liquid in a steel pipeline.

3. Pipeline

In this Chapter we develop a mathematical model of the steady-state functioning of a
hydrocarbon pipeline. Our ultimate objective is to develop software that will be able to
automatically locate PS and PRS along pipeline route and upgrade an existing system of
intermediate PS to ensure desired productivity. Unless specified otherwise, the product being
transported is considered to be an incompressible viscous liquid (e.g., crude oil, petrol,
kerosene, etc). The following is a brief summary of how large hydrocarbon pipeline systems
are operated.

A typical large liquid-phase hydrocarbon pipeline transportation system consists of hundreds
of kilometres of large diameter (>=400mm) line pipe and auxiliary facilities (valve stations,
intermediate pump and pressure reducing stations, metering units, etc.) Due to a relatively
high viscosity of hydrocarbon products (especially waxy oils) friction between the transported
product and pipeline walls results in sharp pressure drops (see Fig.4). It can be easily seen

2
from the Bernoulli equation va — p+gz=const that the operating pressure of a steady-

state flow cannot drop below the atmospheric pressure. However, in applications the
operating pressure is maintained above saturation pressure to prevent product vaporisation
because that may result in the formation of gas pockets with potentially unpredictable
consequences. Additionally, operational circumstances may require that a specified minimum
pressure be delivered at pump or tank suction (see Fig. 7).

The maximum allowed operating pressure of the pipeline is determined based on the yield

strength of pipe material, overall diameter and pipe wall thickness (see Fig. 2) using the
following formula:

Page 10 of 44

‘. -“{:Lc_- _@m.'b{le M_E .-

o
(
/
Il|
J
)
\

'!Q!;- |Dr ocdue 4 vF—[ol

] prraesriyy

% D - rou J’fa e ss
X S o S, O U (P S

Qﬂ M

3

wWTzWwWALL THICKMESS T ; : T :
! 3 Steel hhz?'?&

Fig.2. Principél pipeline characteristics affecting the flow.

MAOP= ZgYS Ly (DesignFaatr

(19)

where WT, OD, YS denote wall thickness in metres, overall diameter in metres and yield
strength in kilograms per square metre. A design factor is applied for safety margin.

MAOP can be converted into the maximum allowed operating head (MAOH) using the formula

MAOP
ap

MAOH = +elevatior.

(20)
MAOQOP and MAOH are shown as magenta lines on Fig. 7 and Fig. 9 respectively.
The proposed model is based on the following assumptions:

1 velocity of the product is constant at all points of pipeline cross-section and parallel to
the pipeline axis;

2 the flow rate is constant;

3 pressure drop (and temperature rise) arises due to friction of product against pipeline
walls; the latter depends on the speed of the product, diameter of the line pipe and
roughness of the pipe walls;

KM POST EL (M) KM (m) OD (IN) WT (IN) Y(:’ESLII)) OD (m) WT (m) Zmp
0 -25.5 0 20.86614 0.314961 47681 0.53 0.008
0.126 -11.9 126 20.86614 0.314961 47681 0.53 0.008
0.252 -2.4 252 20.86614 0.314961 47681 0.53 0.008
0.346 7.56 346 20.86614 0.314961 47681 0.53 0.008
0.423 4.48 423 20.86614 0.314961 47681 0.53 0.008

Page 11 of 44

(S, RN, RGO, R Oy |

0.742 -1.63 742 20.86614 0.314961 47681 0.53 0.008

0.935 1.6 935 20.86614 0.314961 47681 0.53 0.008
1.078 3.23 1078 20.86614 0.314961 47681 0.53 0.008
1.515 14.35 1515 20.86614 0.314961 47681 0.53 0.008
1.782 17.28 1782 20.86614 0.314961 47681 0.53 0.008
2.384 25.76 2384 20.86614 0.314961 47681 0.53 0.008
2.863 20.76 2863 20.86614 0.314961 47681 0.53 0.008
3.003 21.5 3003 20.86614 0.314961 47681 0.53 0.008
3.362 18.78 3362 20.86614 0.314961 47681 0.53 0.008
3.901 16.76 3901 20.86614 0.314961 47681 0.53 0.008
3.915 16.41 3915 20.86614 0.314961 47681 0.53 0.008
4.281 13.91 4281 20.86614 0.314961 47681 0.53 0.008
4.729 12.31 4729 20.86614 0.314961 47681 0.53 0.008
4.946 10.98 4946 20.86614 0.314961 47681 0.53 0.008
5.361 10.61 5361 20.86614 0.314961 47681 0.53 0.008
5.637 8.5 5637 20.86614 0.314961 47681 0.53 0.008
5.873 4.64 5873 20.86614 0.314961 47681 0.53 0.008
6.199 4.93 6199 20.86614 0.314961 47681 0.53 0.008

Fig.3. Fragment of a pipeline datasheet. Columns contain KM posts, elevation,
overall line pipe diameter in inches, line pipe wall thickness in inches,
steel yield strength in pounds per square inch, ambient temperature in degrees Celsius.

4 any flow and pipeline parameters are assumed constant within discrete segments in
between
km points but change across segments (see Fig. 3 and 4);

5 temperature changes slowly along the pipeline and heat transfer through the product
can be neglected.

Fig.3. demonstrates a fragment of a typical pipeline datasheet. All parameters are specified
for discreet segments each from a few hundred to a few thousand metres in length.

4. Model

The purpose of this section is to adapt the governing equations of Chapter I to the problem in
question based on the assumptions of Section 3.

We will assume that the kinematical viscosity and density are known functions depending

“slowly” on temperature -i.e., V =% = f(ST), £<<land p= g(ST), £<<1, flow rate

Q and product specific heat Gy, are constants. Given a value of the desired head at

terminal, pipeline profile and properties (see Fig. 3), we will locate PS and PRS along the
route so as to ensure the desired steady-state flow.

For velocity of the product in segment i we have:

1 __4Q
i) =

Page 12 of 44

Ul Ul Ul LU UTUT UL UL U U LT LT U1

where V(i), D (l) are speed of the product in, and inner diameter of, the i-th pipeline
segment.

For the momentum balance (see (3)) we obtain:

o) 2 M
~vi-

L]
_ S i)) (i) eli) —eli-1)
= AT(Mi) o £ e AT(i))g i £ o
__pli)—pli-1

n{) knli 1)_F)(T(i))mv(i)|v(i)|

22)

where el(i) is the elevation of the i-th segment, p(i) is the product pressure in the segment,
ki —1), kmi) are the beginning and the end of the segment. The last term in the right-

hand side of (22) is the semi-empirical Darcy friction term (see [DH]), /\(i) isa
dimensionless friction factor. We use the following empirical rule for calculating the latter:

If the Reynolds number Re = Re(i) = %?@ <2000 then

. 64
Ali) =Rd]] (23)

otherwise

X05(i) = =2 Eﬂg@g-;(l;)(+ 2O

(24)

where r(i) is the pipeline wall roughness (see Fig.2 and 3).

Page 13 of 44

)
ﬁ(u\
D({_’ll)

J) {L.—"’

P (-
MBOP (i -—i)

Fig.4. All flow and pipeline parameters are assumed constant within discrete segments in
between
km points but may change across segments.

Newton’s bi-quadratic method can be used for solving the algebraic equation (24).

Eventually, for energy balance we have:

i o T

] ot

= ATyt k’f}"ﬂ‘{fﬁl)) 43(5’)) [70) =Tyl + A0 20)

(25)

where U(i) denotes the overall heat transfer coefficient through the turbulent boundary

layer and pipeline wall, and Tamb(i) is the ambient temperature at the i-th segment. Note

that heat transfer through the product is neglected based on the assumption 5 of the previous
Section. Heat conductivity through the turbulent boundary layer is adequately described by
the following (empirical) formula:

Kplayeri) = Ali)ey AT()Mi) /8

(26)

Hence for U(i) as the heat transfer coefficient of two adjacent media we obtain:

U(i) = [kprapenli) ™ + Kopali))"
(27)

Page 14 of 44

where K Wa”(i) is the heat conductivity of the i-th segment’s walls.

Page 15 of 44

Chapter lll. Flow Simulation

This chapter briefly discusses an application that implements the model described in the
previous Chapter (see [MM]).

5. Interfaces and Output

Fig. 5 and 6 show principal data entry and control interfaces of the application. The
application has been implemented using VBA modules imbedded in an MS Excel spreadsheet.

E3 Microsoft Excel - 1.xls — o] x|

File Edit ‘Yiew Insett Formak Tools Data Window Help -8 X

» - arial -0 -|lB U
E14 - # =Projecthame
© D

Fig.5. Principal System Interface.

The application’s data input interface (see Fig. 6) allows the user to feed all pipeline and
product parameters and initial values in a tabulated format in a spreadsheet (se Fig.3).

Edit Exercise.. LI
o ArrayTopCells [SingleYalueData

Project Mame: OPTION 4D 10MTA Mo of KM posts: 1622

KM post: USERI$CS2] - Q (mafs): 0418611111

Elevation: USERI$EF2 1| | Romama)w T eop: | USRI £

Overal Diameter: | USERIFHEZ j— MU fm2fsh v T: USERIgNE2 j—

wwiall Thicknsss: USERI$1$2 = Terrinal head (rmy; | 200

) USER IG2 -

e i — Thermodynamics —————————

“wall Roughness: USER!$¥§2 j— Heat Transfer USERI$T4Z T

Design Factor: USERISH2 J | [e Capacity: SERISUEZ N
Ambient T: USERI$352 N
Initial Product T: [5

OK I Cancel |

Fig.6. Data Input Interface.

Fig. 7-12 illustrate the application’s sample output that is generated using Excel’s charting
capabilities.

6. Location of PS and PRS

The application’s capabilities of automated PS/PRS location as well as upgrade of an existing
layout are the features that make this application unique in its class.

Page 16 of 44

The following upgrade was suggested by the application for the pipeline whose profile is
shown on Fig.9 which had two existing pump stations at Km 350 and Km 650:

Suggested Upgrade (+1 = PS, -1 = PRS):

972196.

7 11 -1
920000 1
789084.

9 1
763065.

9 -1
696856.

8 1
592107.

2 1
497139.

4 1
390000 1
312108.

2 1
206103.

4 1
70201.1

3 1
118597.

2 1
16368.8

2 1

The following listing shows the application’s UpgradeStations() function.

Public Sub UpgradeStations()

Dim i As Integer, j As Integer, x As Double, h As Double, Delta As Double
Dim k As Integer, upgrade As Integer

Dim old h As Double, h1 As Double

If Not DataLoaded Then MsgBox "No data": Exit Sub
TerminalHead = Val(Worksheets("DATA").Range("TerminalHead").Value)
N = Val(Worksheets("DATA").Range("NoOfKmPosts").Value)

If TerminalHead < Profile(N - 1) Then _
MsgBox "Destination head must be in excess of elevation", ,
"Ordos 99": Exit Sub
ProgressOn
With Application.Worksheets("DATA")
UpgradedNoOfStations = .Range("UPGRADENOOFSTATIONS").Cells(1, 1).Value
For j = 0 To UpgradedNoOfStations - 1
UpgradeStX(j) = .Range("UPGRADESTATIONSX").Cells(1 + j, 1).Value
UpgradeStation(j) = .Range("UPGRADESTATIONTYPES").Cells(1 + j, 1).Value
Call ShowProgress("Loading upgraded station data...", j + 1, UpgradedNoOfStations)
Next j
End With

ProgressOff

ProgressOn

NoOfStations = 0: h = TerminalHead: i = N- 1: x = Km(N - 1)
upgrade = 0

' x = latest studied node co-ordinate

Whilei> 0

Page 17 of 44

i=i-1
hold=h
h = h + Gradient(i) * (x - Km(i))
If Km(i) <= UpgradeStX(upgrade) And upgrade < UpgradedNoOfStations Then
x = UpgradeStX(upgrade)
h = h - Gradient(i) * (x - Km(i))
upgrade = upgrade + 1
If UpgradeStation(upgrade - 1) = 1 Then ' upgraded pump
Delta =h
GoTo AddPump
Else ' upgraded regulator
GoTo AddRegulator
End If
Elself h <= Profile(i) Then ' run into ground - regulator site
x = IntersectionOf(Km(i), Km(i + 1), Profile(i), Profile(i + 1), Km(i), x, h, h old)

" equate h to just elevation of point x on the profile
h = Profile(i) + (x - Km(i)) * (Profile(i + 1) - Profile(i)) / (Km(+ 1) - Km(i))
' add a reduction station
AddRegulator:
StX(NoOfStations) = x: Station(NoOfStations) = -1

j = HighPoint(x, h)
If j = -1 Then MsgBox "Error High Point", , "Ordos 99": Exit Sub

Delta =0
Ifj <iThen
Fork=jToi-1
Delta = Delta + (Km(k + 1) - Km(k)) * Gradient(k)
Next k
End If
Delta = Delta + (x - Km(i)) * Gradient(i)

' profile too high

'If Profile(El(j)) > Operating(j) Then

' MsgBox "Elevation at point " & Format(Km(j), "##.##") & " exceeds OP", , _
' "Ordos 99 - calculation aborted"

ProgressOff

' Exit Sub

'End If

' head reduction
DeltaH(NoOfStations) = Profile(j) - Delta - h
h = h + DeltaH(NoOfStations)
NoOfStations = NoOfStations + 1
h=h+ 0.01 ' margin
Elself h >= PumpOrOp(i) Then ' exceeded OP - pump site
x = IntersectionOf(Km(i), Km(i + 1), _
PumpOrOp(i), PumpOrOp(i + 1),
Km(i), x, h, h old)

Delta = PumpOrOp(i) + (x - Km(i)) * _
(PumpOrOp(i + 1) - PumpOrOp(i)) / _
(Km(i + 1) - Km(i))
AddPump:
' minimum suction pressure
h = Profile(i) + (x - Km(i)) *
(Profile(i + 1) - Profile(i)) /
(Km(i + 1) - Km(i))
h = Maximum(h, El(i) + MinPumpSuct / (Density(i) * gravity))
StX(NoOfStations) = x

j = HighPoint(x, h)
Ifj <> -1 Then
hl = Profile(j)

Ifj <iThen
Fork=jToi-1

Page 18 of 44

hl =hl - (Km(k + 1) - Km(k)) * Gradient(k)
Next k
End If
hl =hl - (x - Km(i)) * Gradient(i)
Ifhl >hThenh =hl
End If

Delta = Delta - h

'add a pump station
Station(NoOfStations) = 1
DeltaH(NoOfStations) = Delta
NoOfStations = NoOfStations + 1
h=h + 0.01 ' margin
Else ' carry on OK
x = Km(i)
End If
IfiMod 2 = 0 Then _
Call ShowProgress("Upgrading station layout...", N -i, N - 1)
Wend
ProgressOff
ProgressOn
' save station locations and delta head
With Application.Worksheets("DATA")
.Range("NOOFSTATIONS").Cells(1, 1).Value = _
NoOfStations
For j = 0 To NoOfStations - 1
.Range("STATIONS").Cells(1 + j, 1).Value = _
StX(j)
.Range("DELTAHEAD").Cells(1 + j, 1).Value = _
DeltaH(j)
.Range("STATIONTYPES").Cells(1 + j, 1).Value = _
Station(j)
If j Mod 5 = 0 Then _
Call ShowProgress("Storing station data...", j, N - 1)
Next j
End With

ProgressOff

Call InstallStations
End Sub

Page 19 of 44

Bars

Metres

OPERATING PRESSURE-OPTION 4D 10MTA

80

70] " 1’

6 YN
—— Operating Pressure
I I — MAOP
1 Pump suction
—— Minimal pressure

Ay A
SR
RN

10 ?\, i f \,' ‘
0 e L e e e L e e e L e s e e L s e e e e N A m
n O ~ O o o YV o o o YV Y VW YV VW OV v o o o © VW YV Vv Y
T O O ¥ 1N O O OO O O 00O O O+ N oMM MmO Mmoo MmO M A A 3 A nos
0 OO M O I~ N 0 ©W W N KN = 1D 1N W W "N A 0 N I~ O 0 VWM<t d W1 < O O 0 O
A M O ~ O M~ AN~ ON O A S ™SO0 1N O W oM Wn OW~N 0o O M S N o~
N 4 N N MM T T NN N O O O NN MN~NMNMMNMMNM OO OO OO

Metres

Fig.7. Pipeline MAOP and Operating Pressure. Drop in MAOP at around
Km?780 is
due to a segment of old pipe.

PUMP AND REDUCTION STATIONS-OPTION 4D 10MTA

900
800 765.5589754
E—
1661.2345716]
700 ‘ ‘
0421547453 [50h 9724303
159D.9724393]
600 557.5208881 548 0743734 — |
489743734 —
500 639.9096277 —
365.2449772 1
400 -
[| |OStations
300 —
200 —
—— —
100 {3673950031 —
0 T
8 3 e = i 3 3 > 8 S
m ol oY j=3 o ™ O g L (=4
X 2 3 Z S = 5 > 4
-100 1 P 56.8594077 i S ° <
-200

Metres

Fig.8. Qty 2 PRS and Qty 8 PS along a 1000 km 10MTA oil pipeline

Page 20 of 44

Profile, MAOH and Head-OPTION 4D 10MTA

2000
JLP ket

1500 -

/M| W i
1000 y IU - ‘{.

Metres
I
\
4
[
\’
—
B
=
&
?
=
=

-}

LN

500
J

-500

Metres

Fig.9. MAOP converted into MAOH (magenta line)

Profile, MAOH and Head-OPTION 4D 10MTA

2000
,LP J’Tr \Lu‘k \a
1500 / —+
J V]
t
NN
1000 ALy Mk q. i} J
LA #ﬂj e \BIN h
£ TN by, Ul
3 Jf“‘\b '
500 J
gAY
i it sl
0 AN e ,A | | V| ‘
-500
Metres

——Elevation
— MAOH

——Elevation
—MAOH
—Head

Fig.10. Elevation, head and MAOH. Vertical rises of head match PS locations.
Vertical drops are PRS locations. Slanted head indicate pressure/head

gradient due to friction.

Page 21 of 44

AMBIENT AND PRODUCT TEMPERATURES-OPTION 4D 10MTA

—— Ambient Temperature
—— Product Temperature

14

12

10

© ©

snisp) "ba3g

o

98€7L6
999€96
9918€6
991888
9911v8
990908
99916L
96£V8L
999€LL
91099L
996.SL
91ESCL
910€69
91€849
91€CC9
91€98S
9v66€S
TLOOTS
9v688Y
9v6E
9veE6LY
9v¥88€
9v66EE
9Y626¢
9v6Cre
9v6261
Elda449
920€01
92208
9/8¥9
9€02y
v06T
0

Metres

Fig.11. Product and ambient temperature. The product temperature steadily grows
from 5 to over 12 degrees Celsius due to irreversible production of heat.

Gradient-OPTION 4D 10MTA

Gradient

—t |

0.0063

0.0062

0.0061

0.006

0.0059

0.0058

0.0057

0.0056

0.0055

9999/6
990896
906156
991806
991098
99€v18
9vZL6L
99688L
98CLLL
99.89L
995€9L
996LVL
9TOETL
9TELLY
910079
91€Z19
9TETLS
916825
9€650S
TL918Y
Iv6YSY
9v60CY
9v68LE
9v6TEE
9618¢
E143234
9v658T
9Y68ET
9Z€00T
92S6L
TETY9
9601
0Z/81
0

Metres

Fig.12. Pressure gradient. Two dips at the beginning and in the centre correspond to a higher

quality line pipe.

Page 22 of 44

Appendix A. Source Code of the Data Module

Public Sub Edit Exercise()
With Application.Worksheets("DATA")
EditExercise.Controls("ProjectName").Text =
.Range("ProjectName").Value

EditExercise.Controls("NoOfKmPosts").Value =
.Range("NoOfKmPosts").Value

EditExercise.Controls("Q").Value = _
.Range("Q").Value

EditExercise.Controls("SGCell").Value = _
.Range("SGCell").Value

EditExercise.Controls("TerminalHead").Value = _
.Range("TerminalHead").Value

EditExercise.Controls("KMPostCell"). Text = _
.Range("KMPostCell").Value

EditExercise.Controls("ElevationCell"). Text = _
.Range("ElevationCell").Value

EditExercise.Controls("ODCell").Text = _
.Range("ODCell").Value

EditExercise.Controls("WTCell").Text = _
.Range("WTCell").Value

EditExercise.Controls("YSCell").Text =
.Range("YSCell").Value

EditExercise.Controls("RoughnessCell"). Text =
.Range("RoughnessCell").Value

EditExercise.Controls("HTRCell").Text = _
.Range("HTRCell").Value

EditExercise.Controls("HCCell").Text =
.Range("HCCell").Value

EditExercise.Controls("InitialTemperature").Text =
.Range("InitialTemperature").Value

EditExercise.Controls("DesignFactorCell"). Text =
.Range("DesignFactorCell").Value

EditExercise.Controls("TemperatureCell").Value = _
.Range("TemperatureCell").Value

Page 23 of 44

EditExercise.Controls("KVCell").Value =
.Range("KVCell").Value

End With
VBAProject.EditExercise.Show
End Sub

Public Sub Store Exercise()
With Application.Worksheets("DATA")
.Range("ProjectName").Value = _
EditExercise.Controls("ProjectName").Text

.Range("DesignFactorCell").Value = _
EditExercise.Controls("DesignFactorCell"). Text

.Range("NoOfKmPosts").Value = _
EditExercise.Controls("NoOfKmPosts").Value

.Range("Q").Value = _
EditExercise.Controls("Q").Value

.Range("TemperatureCell").Value = _
EditExercise.Controls("TemperatureCell").Value

.Range("TerminalHead").Value = _
EditExercise.Controls("TerminalHead").Value

.Range("KMPostCell").Value = _
EditExercise.Controls("KMPostCell"). Text

.Range("ElevationCell").Value = _
EditExercise.Controls("ElevationCell").Text

.Range("ODCell").Value = _
EditExercise.Controls("ODCell").Text

.Range("WTCell").Value = _
EditExercise.Controls("WTCell").Text

.Range("YSCell").Value = _
EditExercise.Controls("YSCell").Text

.Range("RoughnessCell").Value = _
EditExercise.Controls("RoughnessCell").Text

.Range("HTRCell").Value = _
EditExercise.Controls("HTRCell"). Text

.Range("HCCell").Value = _
EditExercise.Controls("HCCell").Text

.Range("InitialTemperature").Value = _
EditExercise.Controls("InitialTemperature").Text

Page 24 of 44

.Range("DesignFactorCell").Value =
EditExercise.Controls("DesignFactorCell"). Text

.Range("TemperatureCell").Value = _
EditExercise.Controls("TemperatureCell").Value

.Range("KVCell").Value = _
EditExercise.Controls("KVCell").Value

.Range("SGCell").Value = _
EditExercise.Controls("SGCell").Value

End With
MATH.LoadData

End Sub

Public Sub ShowProgress(ByVal JobName As String,
ByVal Value As Double, ByVal MaxValue As Double)
Application.StatusBar = JobName & " " &
Format(Value * 100 / MaxValue, "##") & "% done"
End Sub

Public Sub ProgressOn()
Application.StatusBar =
End Sub

Public Sub ProgressOff()
Application.StatusBar = "Ready"
End Sub

' return sheet name
Public Function SheetName(ByVal CellName As String) As String
Dim i As Integer
i = InStr(1, Range(CellName).Worksheet, "I", 1)
Ifi> 0 And i <> Null Then
SheetName = Left(CellName, i- 1)
Else
SheetName = ""
End If
End Function

Public Function RangePointedToBy(ByVal CellName As String) As String
Dim SName As String
Dimrl, cl, 12, c2

rl = Range(Application.Range(CellName).Value).Cells(1, 1).Row
c1 = Range(Application.Range(CellName).Value).Cells(1, 1).Column
r2 = Range(Application.Range(CellName).Value).Cells(N, 1).Row

c2 = Range(Application.Range(CellName).Value).Cells(N, 1).Column
SName = Range(Application.Range(CellName).Value).Worksheet.Name
RangePointedToBy = SName & "!R" & Format(rl, "#") & "C" & _
Format(cl, "#") & ":R" & Format(r2, "#") & "C" & Format(c2, "#")
End Function

Page 25 of 44

Public Function RangeWithTopAt(ByVal CellName As String) As String
Dim SName As String
Dimrl, cl, 12, c2

rl = Range(CellName).Cells(1, 1).Row
cl = Range(CellName).Cells(1, 1).Column
r2 = Range(CellName).Cells(N, 1).Row

c2 = Range(CellName).Cells(N, 1).Column
SName = Range(CellName).Worksheet.Name
RangeWithTopAt = SName & "!R" & Format(rl, "#") & "C" & _
Format(cl, "#") & ":R" & Format(r2, "#") & "C" & Format(c2, "#")
End Function

Public Function ColumnWithTopAtOfHeight(ByVal CellName As String, ByVal Height As
Integer) As String

Dim SName As String

Dimrl, cl, r2, c2

rl = Range(CellName).Cells(1, 1).Row

cl = Range(CellName).Cells(1, 1).Column

r2 = Range(CellName).Cells(Height, 1).Row

c2 = Range(CellName).Cells(Height, 1).Column

SName = Range(CellName).Worksheet.Name

ColumnWithTopAtOfHeight = SName & "!R" & Format(rl, "#") & "C" & _

Format(cl, "#") & ":R" & Format(r2, "#") & "C" & Format(c2, "#")

End Function

Public Sub ModifyHeadPlot()
Sheets("HEAD AND EL").Select

With ActiveChart
.ChartType = xlLine
.SeriesCollection(1).XValues = "=" & RangePointedToBy("KmPostCell")
.SeriesCollection(1).Values = "=" & RangePointedToBy("ElevationCell")
.SeriesCollection(1).Name = "=""Elevation"""
.SeriesCollection(2).Values = "=" & RangeWithTopAt("MAOH")
.SeriesCollection(2).Name = "=""MAOH"""
.SeriesCollection(3).Values = "=" & RangeWithTopAt("Head")
.SeriesCollection(3).Name = "=""Head"""

.HasTitle = True
.ChartTitle.Characters.Text = "Profile, MAOH and Head" & "-" &
Application.Worksheets("DATA").Range("ProjectName").Value
Axes(xlCategory, xIPrimary).HasTitle = True
.Axes(xlCategory, xIPrimary).AxisTitle.Characters.Text = "Metres"
Axes(xIValue, xIPrimary).HasTitle = True
.Axes(xIValue, x|Primary).AxisTitle.Characters.Text = "Metres"
End With
End Sub

Public Sub ModifyGradientPlot()
Sheets("GRADIENT").Select
With ActiveChart

.ChartType = xlLine

Page 26 of 44

.SeriesCollection(1).XValues = "=" & RangePointedToBy("KmPostCell")
.SeriesCollection(1).Values = "=" & RangeWithTopAt("GRAD")
.SeriesCollection(1).Name = "=""Gradient"""

.HasTitle = True
.ChartTitle.Characters.Text = "Gradient" & "-" &
Application.Worksheets("DATA").Range("ProjectName").Value
Axes(xlCategory, xIPrimary).HasTitle = True
.Axes(xlCategory, xIPrimary).AxisTitle.Characters.Text = "Metres"
Axes(xIValue, xIPrimary).HasTitle = True
Axes(xIValue, xIPrimary).AxisTitle.Characters.Text =
End With
End Sub

Public Sub ModifyTemperaturePlot()
Sheets("TEMPERATURE").Select

With ActiveChart
.ChartType = xlLine
.SeriesCollection(1).XValues = "=" & RangePointedToBy("KmPostCell")
.SeriesCollection(1).Values = "=" & RangePointedToBy("TemperatureCell")

.SeriesCollection(1).Name = "=""Ambient Temperature

.SeriesCollection(2).Values = "=" & RangeWithTopAt("TEMP")

.SeriesCollection(2).Name = "=""Product Temperature"""

.HasTitle = True

.ChartTitle.Characters.Text = "AMBIENT AND PRODUCT TEMPERATURES" & "-" &
Application.Worksheets("DATA").Range("ProjectName").Value

Axes(xlCategory, xIPrimary).HasTitle = True

Axes(xlCategory, xIPrimary).AxisTitle.Characters.Text = "Metres"

Axes(xIValue, xIPrimary).HasTitle = True

.Axes(xIValue, xIPrimary).AxisTitle.Characters.Text = "Deg. Celsius"

End With

End Sub

Public Sub ModifyPressurePlot()
Sheets("OP").Select

With ActiveChart
.ChartType = xlLine
.SeriesCollection(1).XValues = "=" & RangePointedToBy("KmPostCell")
.SeriesCollection(1).Values = "=" & RangeWithTopAt("PRESSURE")
.SeriesCollection(1).Name = "=""Operating Pressure"""
.SeriesCollection(2).Values = "=" & RangeWithTopAt("MAOPBARS")
.SeriesCollection(2).Name = "=""MAQOP"""

.HasTitle = True

.ChartTitle.Characters.Text = "OPERATING PRESSURE" & "-" &
Application.Worksheets("DATA").Range("ProjectName").Value

Axes(xlCategory, xIPrimary).HasTitle = True

Axes(xlCategory, xIPrimary).AxisTitle.Characters.Text = "Metres"

Axes(xIValue, x|Primary).HasTitle = True

Axes(xIValue, xIPrimary).AxisTitle.Characters.Text = "Bars"

End With

Page 27 of 44

End Sub

Public Sub ModifyStationsPlot()
Sheets("STATIONS").Select

With ActiveChart
.SeriesCollection(1).XValues = "=" & ColumnWithTopAtOfHeight("STATIONS",
Application.Worksheets("DATA").Range("NOOFSTATIONS").Cells(1, 1).Value)
.SeriesCollection(1).Values = "=" & ColumnWithTopAtOfHeight("HEADCHANGE", _
Application.Worksheets("DATA").Range("NOOFSTATIONS").Cells(1, 1).Value)
.SeriesCollection(1).Name = "=""Stations"""

.HasTitle = True

.ChartTitle.Characters.Text = "PUMP AND REDUCTION STATIONS" & "-" &
Application.Worksheets("DATA").Range("ProjectName").Value

.Axes(xlCategory, xIPrimary).HasTitle = True

.Axes(xlCategory, xIPrimary).AxisTitle.Characters.Text = "Metres"

.Axes(xIValue, x|Primary).HasTitle = True

Axes(xIValue, xIPrimary).AxisTitle.Characters.Text = "Metres"
End With
End Sub

Sub Macrol()

' Macrol Macro
' Macro recorded 9/2/98 by IT Department

ActiveChart.SeriesCollection.NewSeries
ActiveChart.SeriesCollection(4).Values = "=USER!R2C3:R9C3"
ActiveChart.SeriesCollection(4).Name = "=""xx"""

End Sub

Page 28 of 44

Appendix B. Source Code of the Computations Module

Option Base 0

' maximum array index
Public Const MaxIndex = 2000

" Infinity
Public Const Infinity = 1E+20

' gravity acceleration
Public Const gravity = 9.81

' minimum pressure Newton/m2
Public Const MinimumPressure = 500000

' pump maximum discharge pressure Newton/m?2
Public Const MaxPumpDisch = 1000000000

' operating pressure / maximum allowed operating pressure
Public Const OpByMaop = 0.909

' pump minimum suction pressure Newton/m2
Public Const MinPumpSuct = 600372

' the total No of km posts
Public N As Integer

' Pipeline flowrate

Public Q As Double

' oil specific gravity @ various temperatures
Public Ro(0 To 255) As Double

' various temp @ which Ro is given
Public RoTemp(0 To 255) As Double
' no of given Ro values

Public NoOfRoValues As Integer

' 0il viscosity various temperatures
Public Nu(0 To 255) As Double

' various temp @ which Nu is given
Public NuTemp(0 To 255) As Double
' no of given Nu values

Public NoOfNuValues As Integer

' Ambient temperature on various segments
Public T(0 To MaxIndex) As Double

" Product temperature on various segments
Public Temp(0 To MaxIndex) As Double

' pipeline design factor used with yield strength
Public DesignFactor(0 To MaxIndex) As Double
" km post (input) m

Public Km(0 To MaxIndex) As Double

' elevation (input) m

Page 29 of 44

Public EI(0 To MaxIndex) As Double

' overall diameter (input) m

Public OD(0 To MaxIndex) As Double

" wall thickness (input) m

Public WT(0 To MaxIndex) As Double

'yield strength (input) psi

Public YS(0 To MaxIndex) As Double

' pipe wall roughness

Public Roughness(0 To MaxIndex) As Double

' Heat Transfer Rate through pipeline surface
Public HeatTransferRate(0 To MaxIndex) As Double
"head (calc) m

Public Head(0 To MaxIndex) As Double

' maximum allowed operating pressure (calc) psi
Public MAOP(0 To MaxIndex) As Double

' maximum allowed operating head (calc) m
Public MAOH(0 To MaxIndex) As Double

' Heat capacity of the product
Public ProductHeatCapacity As Double

' No of pump and reduction stations

Public NoOfStations As Integer

' Pump and reduction stations +1 pump, -1 reduct
Public Station(0 To MaxIndex) As Integer

' Delta head @ each station (m)

Public DeltaH(0 To MaxIndex) As Double

' Station x coordinate (m)

Public StX(0 To MaxIndex) As Double

' upgradable station data

Dim UpgradeNoOfStations As Integer

Dim UpgradeStation(0 To MaxIndex) As Integer
Dim UpgradeStX(0 To MaxIndex) As Double

' matrix M[i,j] contains costs of achieving

' output head in the interval

' [HeadOut(j), HeadOut(j+1)] if the input head

"id in the interval [HeadOut(i), HeadOut(i+1)]
Public M(0 To MaxIndex, 0 To MaxIndex) As Double

' matrix contains input heads for an interval
Public HeadIn(0 To MaxIndex) As Double

' matrix contains output heads for an interval
Public HeadOut(0 To MaxIndex) As Double

Private Declare Sub MessageBeep Lib "User32" (ByVal N As Integer)
Sub CallMyDIL()
Call MessageBeep(0) ' Call Windows DLL procedure.
MessageBeep 0 ' Call again without Call keyword.
End Sub

' this data can only be called if valid data

Page 30 of 44

Public Sub LoadData()
Dim i As Integer
'On Error GoTo InvalidData
ProgressOn
With Application.Worksheets("DATA")
N = Val(.Range("NoOfKmPosts").Value)
If N <=1 Then
MsgBox "No of KM posts must be an integer above 1", , "Ordos 99"
GoTo InvalidData
End If
Q = Val(.Range("Q").Value)
If Q <= 0 Then
MsgBox "Flow rate must be a positive real", , "Ordos 99"
GoTo InvalidData
End If
' read table of Ro versus T
i=0
While Not IsEmpty(Range(.Range("SGCell").Value).Cells(1 + i, 1).Value)
Ro(i) = Val(Range(.Range("SGCell").Value).Cells(1 + i, 1).Value)
RoTemp(i) = Val(Range(.Range("SGCell").Value).Cells(1 + i, 2).Value)
If Ro(i) <= 0 Then
MsgBox "Specific gravity must be a postive real”, , "Ordos 99"
GoTo InvalidData
End If
i=i+1
Wend
' if no table found ...
Ifi = 0 Then
MsgBox "At least one value of specific gravity must be specified", , "Ordos 99"
GoTo InvalidData
End If
NoOfRoValues = i

' read table of Nu versus T

i=0

While Not IsEmpty(Range(.Range("KVCell").Value).Cells(1 + i, 1).Value)
Nu(i) = Val(Range(.Range("KVCell").Value).Cells(1 + i, 1).Value)
NuTemp(i) = Val(Range(.Range("KVCell").Value).Cells(1 + i, 2).Value)
If Nu(i) <= 0 Then

MsgBox "Kinematic viscosity must be a postive real", , "Ordos 99"
GoTo InvalidData

End If
i=i+1

Wend

' if no table found ...

Ifi =0 Then
MsgBox "At least one value of kinematic viscosity must be specified", , "Ordos 99"
GoTo InvalidData

End If

NoOfNuValues = i

TerminalHead = Val(.Range("TerminalHead").Value)

If TerminalHead <= 0 Then
MsgBox "Terminal must be a postive real or zero", , "Ordos 99"
GoTo InvalidData

End If

Page 31 of 44

Fori=0ToN-1
Temp(i) = T(i) ' initial approximation of product temperature
Km(i) = Val(Range(.Range("KMPostCell").Value).Cells(1 + i, 1).Value)
If Km(i) < 0 Then
MsgBox "KM Posts must be postive reals or zero, index " & _
Format(i, "####"), , "Ordos 99"
GoTo InvalidData
End If
Ifi > 0 Then
If Km(i) <= Km(- 1) Then
MsgBox "KM Posts must monotonously increase, index " &
Format(i, "####"), , "Ordos 99"
GoTo InvalidData
End If
End If
El(i) = Val(Range(.Range("ElevationCell").Value).Cells(1 + i, 1).Value)
OD(i) = Val(Range(.Range("ODCell").Value).Cells(1 + i, 1).Value)
If OD(i) <= 0 Then
MsgBox "Overall diameters must be postive reals, index " & _
Format(i, "####"), , "Ordos 99"
GoTo InvalidData
End If
WT(i) = Val(Range(.Range("WTCell").Value).Cells(1 + i, 1).Value)
If WT(i) <= 0 Then
MsgBox "Wall thicknesses must be postive reals, index " &
Format(i, "####"), , "Ordos 99"
GoTo InvalidData
End If
YS(i) = Val(Range(.Range("YSCell").Value).Cells(1 + i, 1).Value)
If YS(@i) <= 0 Then
MsgBox "Yield strengths must be postive reals, index " &
Format(i, "####"), , "Ordos 99"
GoTo InvalidData
End If

Roughness(i) = Val(Range(.Range("RoughnessCell").Value).Cells(1 + i, 1).Value)
If Roughness(i) <= 0 Then
MsgBox "Roughnesses must be postive reals, index " & _
Format(i, "####"), , "Ordos 99"
GoTo InvalidData
End If

T(i) = Val(Range(.Range("TemperatureCell").Value).Cells(1 + i, 1).Value)
DesignFactor(i) = Val(Range(.Range("DesignFactorCell").Value).Cells(1 + i, 1).Value)
If DesignFactor(i) <= 0 Then

MsgBox "Design factor be a postive real below or equal 1", , "Ordos 99"

GoTo InvalidData
End If

HeatTransferRate(i) = Val(Range(.Range("HTRCell").Value).Cells(1 + i, 1).Value)
If HeatTransferRate(i) < 0 Then
MsgBox "het transfer rates must be postive reals, index " & _
Format(i, "####"), , "Ordos 99"
GoTo InvalidData

Page 32 of 44

End If
If i Mod 15 = 0 Then Call ShowProgress("Loading data...", i, N - 1)
Next i
ProductHeatCapacity = Val(Range(.Range("HCCell").Value).Cells(1, 1).Value)
Temp(0) = .Range("InitialTemperature").Value
End With
ProgressOff
Exit Sub
InvalidData: MsgBox "Invalid parameter - check your input data", , "Ordos 99"
Call EraseData
ProgressOff
End Sub

Public Sub EraseData()
N=0
End Sub

Public Function Datal.oaded() As Boolean
Datal.oaded = (N > 1)
End Function

Public Sub Calc MaxOpHeadAndPressure()
Dim i As Integer
Call Calc ProductTemperature
If Not DatalLoaded Then MsgBox "No data": Exit Sub
ProgressOn
Fori=0ToN-1
MAOP(i) = 2 * (WT(i) / OD(i)) * YS(i) * gravity * (0.454 / (0.0254 * 0.0254)) *
DesignFactor(i)
MAOH(i) = MAOP(i) / (Density(i) * gravity) + El(i)
Application.Worksheets("DATA").Range("MAOP").Cells(1 + i, 1).Value = _
MAOP(i)
Application.Worksheets("DATA").Range("MAOPBARS").Cells(1 + i, 1).Value = _
MAOP() / gravity / 10200
Application.Worksheets("DATA").Range("MAOH").Cells(1 + i, 1).Value = _
MAOH(i)
Application.Worksheets("DATA").Range("GRAD").Cells(1 + i, 1).Value = _
Gradient(i)
If i Mod 20 = 0 Then _
Call ShowProgress("Calculating MAOP...", i, N - 1)
Next i
Call ModifyPressurePlot
Call ModifyHeadPlot
Call ModifyGradientPlot
Charts("HEAD AND EL").Activate
ProgressOff
End Sub

Public Function CombinedHeatTransfer(ByVal i As Integer) As Double
Dim yield1 As Double
yield1 = lambda(i) * ProductHeatCapacity * Density(i) * velocity(i) / 8
CombinedHeatTransfer = 1/ (1 /yieldl + 1/ HeatTransferRate(i))
End Function

Page 33 of 44

Public Sub Calc ProductTemperature()
Dim i As Integer
If Not DataLoaded Then MsgBox "No data": Exit Sub
ProgressOn
Application.Worksheets("DATA").Range("TEMP").Cells(1, 1).Value = _
Temp(0)
Fori=1To N
Temp(i) = Temp(i - 1) + (4 * CombinedHeatTransfer(i - 1) / Diameter(i- 1)
*(T@A-1) - Temp(i - 1)) / velocity(i- 1) + _
Gradient(i - 1) * Density(i - 1) * gravity) * (Km(i) - Km(i - 1)) / (Density(i - 1) *
ProductHeatCapacity)
Application.Worksheets("DATA").Range("TEMP").Cells(1 + i, 1).Value = _
Temp(i)
If i Mod 20 = 0 Then _
Call ShowProgress("Calculating Temperature...", i, N - 1)
Next i
Call ModifyTemperaturePlot
Charts("TEMPERATURE").Activate
ProgressOff
End Sub

Public Sub InstallStations()

Dim i, j As Integer

Dim h As Double
ProgressOn

' load station locations and delta head

With Application.Worksheets("DATA")
TerminalHead = Val(.Range("TerminalHead").Value)
N = Val(.Range("NoOfKmPosts").Value)

NoOfStations = .Range("NOOFSTATIONS").Cells(1, 1).Value
For j = 0 To NoOfStations - 1
StX(j) = .Range("STATIONS").Cells(1 + j, 1).Value
DeltaH(j) = .Range("DELTAHEAD").Cells(1 + j, 1).Value
Station(j) = .Range("STATIONTYPES").Cells(1 + j, 1).Value
IfjMod 5 = 0 Then _
Call ShowProgress("Loading station data...", j, N- 1)
Next j
End With
ProgressOff
ProgressOn
i=N-1:h=TerminalHead: j =0
Do Whilei >= 0
Head(i) = h
Application.Worksheets("DATA").Range("HEAD").Cells(1 + i, 1).Value = _
h
Application.Worksheets("DATA").Range("PRESSURE").Cells(1 + i, 1).Value = _
(h - El(i)) * Density(i) / 10200
i=i-1
Ifi < 0 Then Exit Do
h = h + Gradient(i) * (Km(i + 1) - Km(i))
If j < NoOfStations Then
Do While Km(i) <= StX(j)

Page 34 of 44

h = h - Station(j) * DeltaH(j)

j=j+1
If j = NoOfStations Then Exit Do
Loop
End If

If i Mod 20 = 0 Then _
Call ShowProgress("Preparing plot data...", N -i, N- 1)
Loop
ProgressOff
Call ModifyHeadPlot
Call ModifyPressurePlot
Call ModifyStationsPlot
Charts("HEAD AND EL").Activate
End Sub

Public Sub UpgradeStations()

Dim i As Integer, j As Integer, x As Double, h As Double, Delta As Double
Dim k As Integer, upgrade As Integer

Dim old h As Double, hl As Double

If Not DataLoaded Then MsgBox "No data": Exit Sub
TerminalHead = Val(Worksheets("DATA").Range("TerminalHead").Value)
N = Val(Worksheets("DATA").Range("NoOfKmPosts").Value)

If TerminalHead < Profile(N - 1) Then _
MsgBox "Destination head must be in excess of elevation”, ,
"Ordos 99": Exit Sub
ProgressOn
With Application.Worksheets("DATA")
UpgradedNoOfStations = .Range("UPGRADENOOFSTATIONS").Cells(1, 1).Value
For j = 0 To UpgradedNoOfStations - 1
UpgradeStX(j) = .Range("UPGRADESTATIONSX").Cells(1 + j, 1).Value
UpgradeStation(j) = .Range("UPGRADESTATIONTYPES").Cells(1 + j, 1).Value
Call ShowProgress("Loading upgraded station data...", j + 1, UpgradedNoOfStations)
Next j
End With

ProgressOff
ProgressOn
NoOfStations = 0: h = TerminalHead: i = N-1: x = Km(N - 1)
upgrade =0
'x = latest studied node co-ordinate
Whilei> 0
i=i-1
h old=h
h = h + Gradient(i) * (x - Km(i))
If Km(i) <= UpgradeStX(upgrade) And upgrade < UpgradedNoOfStations Then
x = UpgradeStX(upgrade)
h = h - Gradient(i) * (x - Km(i))
upgrade = upgrade + 1
If UpgradeStation(upgrade - 1) = 1 Then ' upgraded pump
Delta=h
GoTo AddPump
Else ' upgraded regulator
GoTo AddRegulator

Page 35 of 44

End If
Elself h <= Profile(i) Then ' run into ground - regulator site
x = IntersectionOf(Km(i), Km(i + 1), Profile(i), Profile(i + 1), Km(i), %, h, h_old)

" equate h to just elevation of point x on the profile
h = Profile(i) + (x - Km(i)) * (Profile(i + 1) - Profile(i)) / (Km(+ 1) - Km(i))
"add a reduction station
AddRegulator:
StX(NoOfStations) = x: Station(NoOfStations) = -1

j = HighPoint(x, h)
If j = -1 Then MsgBox "Error High Point", , "Ordos 99": Exit Sub

Delta =0
Ifj <iThen
Fork=jToi-1
Delta = Delta + (Km(k + 1) - Km(k)) * Gradient(k)
Next k
End If
Delta = Delta + (x - Km(i)) * Gradient(i)

' profile too high

'If Profile(El(j)) > Operating(j) Then
' MsgBox "Elevation at point " & Format(Km(j), "##.##") & " exceeds OP", , _
" "Ordos 99 - calculation aborted"
' ProgressOff

' Exit Sub

'End If

" head reduction
DeltaH(NoOfStations) = Profile(j) - Delta - h
h = h + DeltaH(NoOfStations)
NoOfStations = NoOfStations + 1
h =h + 0.01 ' margin
Elself h >= PumpOrOp(i) Then ' exceeded OP - pump site
x = IntersectionOf(Km(i), Km(@ + 1), _
PumpOrOp(i), PumpOrOp(i + 1), _
Km(i), %, h, h old)

Delta = PumpOrOp(i) + (x - Km(i)) * _
(PumpOrOp(i + 1) - PumpOrOp(i)) / _
(Km(i + 1) - Km(i))
AddPump:
' minimum suction pressure
h = Profile(i) + (x - Km(i)) * _
(Profile(i + 1) - Profile(i)) / _
(Km(i + 1) - Km())
h = Maximum(h, El(i) + MinPumpSuct / (Density(i) * gravity))
StX(NoOfStations) = x

j = HighPoint(x, h)

If j <> -1 Then
h1 = Profile(j)

Page 36 of 44

Ifj <iThen

Fork=jToi-1
h1l = hl - (Km(k + 1) - Km(k)) * Gradient(k)
Next k
End If

h1l = h1 - (x - Km(i)) * Gradient(i)
Ifhl >hThenh =hl
End If

Delta = Delta - h

"add a pump station
Station(NoOfStations) = 1
DeltaH(NoOfStations) = Delta
NoOfStations = NoOfStations + 1
h =h + 0.01 ' margin
Else ' carry on OK
x = Km(i)
End If
IfiMod 2 = 0 Then
Call ShowProgress("Upgrading station layout...", N -i, N - 1)
Wend
ProgressOff
ProgressOn
' save station locations and delta head
With Application.Worksheets("DATA")
.Range("NOOFSTATIONS").Cells(1, 1).Value = _
NoOfStations
For j = 0 To NoOfStations - 1
.Range("STATIONS").Cells(1 + j, 1).Value = _
StX(j)
.Range("DELTAHEAD").Cells(1 + j, 1).Value = _
DeltaH(j)
.Range("STATIONTYPES").Cells(1 + j, 1).Value = _
Station(j)
IfjMod 5 = 0 Then _
Call ShowProgress("Storing station data...", j, N- 1)
Next j
End With

ProgressOff
Call InstallStations
End Sub

Public Sub LocateStations()

Dim i As Integer, j As Integer, x As Double, h As Double, Delta As Double
Dim k As Integer

Dim old_h As Double

If Not DataLoaded Then MsgBox "No data": Exit Sub

Calc MaxOpHeadAndPressure

TerminalHead = Val(Worksheets("DATA").Range("TerminalHead").Value)
N = Val(Worksheets("DATA").Range("NoOfKmPosts").Value)

If TerminalHead < Profile(N - 1) Then _

Page 37 of 44

MsgBox "Destination head must be in excess of elevation", ,
"Ordos 99": Exit Sub

ProgressOn
NoOfStations = 0: h = TerminalHead: i=N-1: x = Km(N - 1)
' x = latest installed station co-ordinate
Whilei >0
i=i-1
h old =h
h = h + Gradient(i) * (x - Km(i))
If h <= Profile(i) Then ' run into ground - regulator site
x = IntersectionOf(Km(i), Km(i + 1), Profile(i), Profile(i + 1), Km(i), %, h, h_old)
" equate h to just elevation of point x on the profile
h = Profile(i) + (x - Km(i)) * (Profile(i + 1) - Profile(i)) / (Km(i + 1) - Km(i))
"add a reduction station
StX(NoOfStations) = x: Station(NoOfStations) = -1

j = HighPoint(x, h)
If j = -1 Then MsgBox "Error High Point", , "Ordos 99": Exit Sub

Delta =0
Ifj <iThen
Fork=jToi-1
Delta = Delta + (Km(k + 1) - Km(k)) * Gradient(k)
Next k
End If
Delta = Delta + (x - Km(i)) * Gradient(i)

' profile too high

'If Profile(El(j)) > Operating(j) Then
' MsgBox "Elevation at point " & Format(Km(j), "##.##") & " exceeds OP", , _
" "Ordos 99 - calculation aborted"
' ProgressOff

' Exit Sub

'End If

" head reduction
DeltaH(NoOfStations) = Profile(j) - Delta - h
NoOfStations = NoOfStations + 1

i=j
h = Profile(j) + 0.01
x = Km(j)

Elself h >= PumpOrOp(i) Then ' exceeded OP - pump site
x = IntersectionOf(Km(i), Km(@ + 1),
PumpOrOp(i), PumpOrOp(i + 1), _
Km(i), x, h, h old)

' minimum suction pressure
h = Profile(i) + (x - Km(i)) * _
(Profile(i + 1) - Profile(i)) / _
(Km(i + 1) - Km(i))
h = Maximum(h, El(i) + MinPumpSuct / (Density(i) * gravity))
Delta = PumpOrOp(i) + (x - Km(i)) * _
(PumpOrOp(i + 1) - PumpOrOp(i)) / _

Page 38 of 44

(Km@ + 1) - Km(@)) - h
StX(NoOfStations) = x

j = HighPoint(x, h)

If j <> -1 Then
h = Profile(j)
Ifj <iThen
Fork=jToi-1
h=h-(Km(k + 1) - Km(k)) * Gradient(k)
Next k
End If
h =h - (x - Km(i)) * Gradient(i)
Delta = PumpOrOp(i) + (x - Km(i)) * _
(PumpOrOp(i + 1) - PumpOrOp(i)) / _
(Km@ + 1) - Km(@)) - h
End If
"add a pump station
Station(NoOfStations) = 1
DeltaH(NoOfStations) = Delta
NoOfStations = NoOfStations + 1
h =h + 0.01 'extra margin
Else ' carry on OK
x = Km(i)
End If
Ifi Mod 15 = 0 Then _
Call ShowProgress("Locating stations...", N-i, N - 1)
Wend
ProgressOff
ProgressOn
' save station locations and delta head
With Application.Worksheets("DATA")
.Range("NOOFSTATIONS").Cells(1, 1).Value = _
NoOfStations
For j = 0 To NoOfStations - 1
.Range("STATIONS").Cells(1 + j, 1).Value = _
StX(j)
.Range("DELTAHEAD").Cells(1 + j, 1).Value = _
DeltaH(j)
.Range("STATIONTYPES").Cells(1 + j, 1).Value = _
Station(j)
IfjMod 5 = 0 Then _
Call ShowProgress("Storing station data...", j, N- 1)
Next j
End With

ProgressOff
Call InstallStations
End Sub

Public Function Profile(ByVal i As Integer) As Double
Profile = El(i) + MinimumPressure / (Density(i) * gravity)
End Function

Page 39 of 44

Public Function Operating(ByVal i As Integer) As Double
Operating = El(i) + OpByMaop * MAOP(i) / (Density(i) * gravity)
End Function

Public Function Diameter(ByVal i As Integer) As Double
Diameter = OD(i) - 2 * WT(i)
End Function

Public Function velocity(ByVal i As Integer) As Double
velocity = 4 * Q / (3.1415 * Diameter(i) * Diameter(i))
End Function

Public Function viscosity(ByVal i As Integer) As Double
Dim j As Integer
If NoOfNuValues = 1 Then
viscosity = Nu(0)
Else
j=0
Do While Temp(i) > NuTemp(j)
j=j+1
If j = NoOfNuValues Then Exit Do
Loop
If j = NoOfNuValues Then
viscosity = Nu(j - 1) + (Nu(j - 1) - Nu(j - 2)) * (Temp(i) - NuTemp(j - 1)) / NuTemp(j - 1)
- NuTemp(j - 2))
Elself j = 0 Then
viscosity = Nu(j) + (Nu(j + 1) - Nu(j)) * (Temp(i) - NuTemp(j)) / (NuTemp(j + 1) -
NuTemp(j))
Else
j=j-1
viscosity = Nu(j) + (Nu(j + 1) - Nu(j)) * (Temp(i) - NuTemp(j)) / (NuTemp(j + 1) -
NuTemp(j))
End If
End If
End Function

Public Function Density(ByVal i As Integer) As Double
Dim j As Integer
If NoOfRoValues = 1 Then
Density = Ro(0)
Else
j=0
Do While Temp(i) > RoTemp(j)
j=j+1
If j = NoOfRoValues Then Exit Do
Loop
If j = NoOfRoValues Then
Density = Ro(j - 1) + (Ro(j - 1) - Ro(j - 2)) * (Temp(i) - RoTemp(j - 1)) / (RoTemp(j - 1) -
RoTemp(j - 2))
Elself j = 0 Then
Density = Ro(j) + (Ro(j + 1) - Ro(j)) * (Temp(i) - RoTemp(j)) / (RoTemp(j + 1) -
RoTemp(j))
Else

j=j-1

Page 40 of 44

Density = Ro(j) + (Ro(j + 1) - Ro(j)) * (Temp(i) - RoTemp(j)) / (RoTemp(j + 1) -
RoTemp(j))
End If
End If
End Function

Public Function Re(ByVal i As Integer) As Double
Re = velocity(i) * Diameter(i) / viscosity(i)
End Function

Public Function Sqrt(ByVal x As Double) As Double
Sqrt = Exp(0.5 * Application.Ln(Abs(x)))
End Function

Public Function F lambda(ByVal s As Double, ByVal i As Integer) As Double

F lambda = Application.Ln(Roughness(i) / (3.7 * Diameter(i)) + 2.51 * Abs(s) / Re(i)) + _
Application.Ln(10) *s/ 2

End Function

Public Function dF lambda ds(ByVal s As Double, ByVal i As Integer) As Double
dF lambda ds = 2.51 / (Roughness(i) * Re(i) / (3.7 * Diameter(i)) + 2.51 * Abs(s)) + _
Application.Ln(10) / 2
End Function

Public Function lambda(ByVal i As Integer) As Double

Dim s As Double, j As Integer

' lambda = 0.3164 / Exp(0.25 * Application.Ln(Re(i)))

' lambda = 0.0096 + 5.7 * Sqrt(Roughness(i) _

'/ Diameter(i)) + 1.7 * Sqrt(1 / Re(i))
lambda = 0.11 * Exp(0.2 * Application.Ln(58 / Re(i) + 2 * Roughness(i) / Diameter(i)))
s = 1/ Sqrt(lambda)

Forj=1To 5
s =s - F lambda(s, i) / dF_lambda ds(s, i)
Next j

lambda =1/(s *5s)
End Function

Public Function Gradient(ByVal i As Integer) As Double
Gradient = lambda(i) * (velocity(i) * velocity(i)) / (2 * Diameter(i) * gravity)
End Function

Public Function IntersectionOf(ByVal x11 As Double, ByVal x12 As Double,
ByVal y11 As Double, ByVal y12 As Double,
ByVal x21 As Double, ByVal x22 As Double, _
ByVal y21 As Double, ByVal y22 As Double) As Double
Dim k1 As Double, k2 As Double
Ifx11 =x12 Or x21 = x22 Then
If x21 <> x22 Then

IntersectionOf = x11
Elself x11 <> x12 Then

Page 41 of 44

IntersectionOf = x21
FElself x12 <> x21 Then
IntersectionOf = Infinity
Else
Intersectof = x11
End If
Exit Function
End If

k1l = (y12 -y11) / (x12 - x11)
k2 = (y22 - y21) / (x22 - x21)

If k1 = k2 Then

IntersectionOf = Infinity
Else

IntersectionOf = (x11 * k1 - x21 *k2 + y21 -y11) / (k1 - k2)
End If

End Function

Public Function HighPoint(ByVal x As Double, ByVal y As Double) As Integer
Dim i As Integer, j As Integer, w As Double, hp As Integer, max As Double
max=0:i=0
Do While Km(i) < x
i=i+1
Ifi = N Then HighPoint = -1: Exit Function
Loop
i=i-1
Ifi = -1 Then HighPoint = -1: Exit Function

Forj=0Toi
w = Profile(j)
Fork=jToi-1
If w > Operating(k) Then
w = -Infinity: Exit For
Elself w < Profile(k) Then
w = -Infinity: Exit For
Else
w = w - Gradient(k) * (Km(k + 1) - Km(k))
End If
Next k
w = w - Gradient(i) * (x - Km(i))
If w > max Then
max = w
hp =j
End If
Next j

If max < y Then HighPoint = -1 Else HighPoint = hp
End Function

Public Function Minimum(ByVal a As Double, ByVal b As Double) As Double
If a < b Then Minimum = a Else Minimum = b

Page 42 of 44

End Function

Public Function Maximum(ByVal a As Double, ByVal b As Double) As Double
If a > b Then Maximum = a Else Maximum = b
End Function

Public Function PumpOrOp(ByVal i As Integer) As Double
PumpOrOp = Minimum(Operating(i), EI(i) + MaxPumpDisch / (Density(i) * gravity))
End Function

Page 43 of 44

References

[M] M. A. Maharramov. Steady-State and Transient Flows in Hydrocarbon Pipelines. London,
O.R.E.M. 2002, Eng. Memo No 29789.

[S] L. I. Sedov. Mechanics of Continua. Moscow, NAUKA, 1973, v I, II.

[DH] J. W. Daily, D.R.E Harleman. Fluid Dynamics. Addison-Wesley, 1966.

Page 44 of 44

	Baku State University
	Table of Contents
	Introduction
	Chapter I. Mechanics of Flow in Hydrocarbon Pipelines
	1.	Governing Equations
	2.	Viscous Liquid

	Chapter II. Mathematical Model of a Steady-state Flow through a Steel Pipeline
	3.	Pipeline
	4.	Model

	Chapter III. Flow Simulation
	5.	Interfaces and Output
	6.	Location of PS and PRS

	Appendix A. Source Code of the Data Module
	Appendix B. Source Code of the Computations Module
	References

