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SUMMARY
We present a technique for efficient one-way wave-equation migration of seismic data in Tilted
Transversally Isotropic Media. The technique combines explicit and implicit wavefield extrapolation, and
achieves good imaging results at a fraction of the computational cost of Reverse Time Migration.



Introduction

Cost-effective and accurate imaging tools for anisotropic media are becoming an integral part of the
standard imaging workflow. While methods based on Reverse Time Migration (RTM) have great advan-
tages over one-way methods in terms of handling multipathing, overturned reflections, internal multiples
and arbirary dips, one-way methods are still capable of delivering fit-for-purpose solutions at a fraction
of the computational cost of RTM. We propose two different algorithms fordepth extrapolation in Tilted
Transversally Isotropic (TTI) media, using explicit (see e.g. Hale (1991)) and implicit (see e.g. Ristow
and Rühl (1997); Nolte (2008)) finite differencing. Both approacheshave advantages and can be com-
bined in a highly efficient migration code. We demonstrate that the implicit methods presented in Shan
(2007) can be generalised to handle dips close to 90◦ at a modest increase in computational complex-
ity, and propose a framework for generating and applying very short spatial explicit extrapolators with
wavenumber-domain filters that successfully complement implicit methods to achieve a considerable
migration speed-up.

TTI Dispersion Relation

We start from the 2-dimensional dispersion relation for plane waves propagating in a Vertically Transver-
sally Isotropic (VTI) medium with coordinatesr (horizontal) andw (vertical):
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This dispersion relation can be obtained from the expression for the velocity of a plane wave in a VTI
medium (see Tsvankin (1996); Shan (2007)). In equation (1),vp is the vertical pressure wave velocity,f
is a constant, andε,δ are the Thomsen parameters. As a TTI medium is just a rotated VTI medium, we
introduce two additional angle parameters: the azimuthψ and tiltφ of the TI symmetry axis. Expressing
the wavenumberskr andkw via kx,ky,kz and using (1), we can solve the vertical wavenumberkz as an
implicit function of kx andky and the medium parameters,kz = K(ω/vp,ε,δ ,φ ,ψ ,kx,ky). The function
K is multivalued, but we will always use only one branch (hence the nameone-way equation) that we
compute and tabulate numerically. Depth extrapolation of a wavefieldu(ω ,x,y,z) in a heterogenous TTI
medium consists in solving the following pseudo-differential operator equation:
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where medium parameters are arbitrary functions of the subsurface coordinatesx,y,z, and indices over
the operators indicate order.

Explicit Extrapolator

In explicit extrapolation, we approximate the explicitdepth-marching schemeu(x,y,z+∆z)= ei∆zKu(x,y,z)
with a finite-difference operator (explicit extrapolator) for every set of medium parametersω/vp,ε,δ ,φ ,ψ

u(x,y,z+∆z) = ∑
|m|,|l|≤L

aml (ω/vp,ε,δ ,φ ,ψ)em∆x∂/∂xl∆y∂/∂yu(x,y,z) = P(∂/∂x,∂/∂y)u(x,y,z) (3)

whereL is the aperture of the explicit extrapolator (3). Given a maximum imaged dip angleα , we
call the set of pointsΠα = {(kx,ky) : (k2

x + k2
y)/k2

z <= tan2 α} thepassband, and its complement – the
cutband Γ. We require the finite-difference operator in the right-hand side of (3) tohave an absolute
value of strictly less than one in the wavenumber doman over the cutband, thusforcing the cutband
modes to decay with depth. The explicit extrapolator (3) can be constructedin a variety of ways, how-
ever, the main challenge is to achieve accuracy over the passband and stability for all wavemodes while
minimising the apertureL. This can be achieved through the solution of a constrained convex opti-
misation problem‖exp{i∆zK}−P(ikx, iky)‖ → min kx,ky ∈ Πα , |P(ikx, iky)| < H(kx,ky) kx,ky ∈ Γ
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whereH is a barrier function defined over the cutband, controlling the cutband modes’ rate of de-
cay. Solving this problem with the constraint over the entire cutband could beburdensome and result
in larger operator apertures. We propose to impose the constraint only ona smaller circular region

C(τ) = {(kx,ky) :
√

k2
x + k2

y <= (1+ τ)diam(Πα)/2} with τ = τ(ω/vp,ε,δ ,φ ,ψ) > 0 (see Fig. 1 for

an example forα = 60◦, ω = 30Hz,L = 3, τ = .2, ε = .45,δ = .2, vp = 1000,φ = 60◦, ψ = 40◦). The
effect of this is that explicit extrapolators built for different values of medium parameters may still have
substantially overlapping stability domains. The resulting spatial finite-difference operators (3) can then
be applied in groups of operators that are stable over the largest passband, followed by a single cutband
filter application per group. The computational cost of this algorithm per depth step (excluding the one-
off computation of the finite-difference coefficients of (3)) in the absence of sharp velocity contrasts can
be roughly estimated as
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×FFT(Nx,Ny)+(2L+1)2NxNy (4)

whereNx,Ny are inline and crossline grid sizes, and FFT denotes the cost of a two-dimensional FFT. In
case of sharp velocity contrasts (e.g., in the presence of salt bodies) thefirst term in equation (4) should
be replaced with a sum of similar terms corresponding to each velocity range of relatively smooth lateral
variation near a reference velocity. Our tests indicate that a pre-computedcoefficient look-up table
containing single-precision variable-aperture explicit 3D extrapolator coefficients, of a size not larger
than the memory required for a 3D velocity model, is adequate for accurate interpolation of extrapolator
coefficients at run-time. It should be noted that for a fixed maximum dipα the apertureL grows with
the ratioω/vp. However, an appropriate choice ofτ and the barrier functionH allows us to achieve
reasonably compact operators even for large values of the ratio – see Fig. 1.

Implicit Extrapolator

We approximate the right-hand side of equation (2) straight with a finite-difference operator, rather than
a rational function of wavenumbers. For example, in 2D we have:

K (ω/vp,ε,δ ,φ ,kx) ≈
m=N1

∑
m=−N1

am(ω/vp,ε,δ ,φ)eim∆xkx/
m=N2

∑
m=−N2

bm(ω/vp,ε,δ ,φ)eim∆xkx (5)

The coefficientsam andbm in equation (5) can be computed using nonlinear least squares over the set
Πα for a specified maximum dip angleα . If M = max(N1,N2) is the problembandwidth then sub-
sequent solving of (2),(5) using trapezoidal rule is equivalent (in the two-dimensional case) to solving
a system of linear equations with a 2M + 1-diagonal matrix. TheLU factorisation of such a matrix
can be performed in roughly 2NxM2 operations (see e.g. Demmel (1997)), and subsequent solution by
backsubstitution requires roughly 6NxM operations. For 3D, assuming∆x = ∆y, we can approximate
equation (2) using multiway splitting (see Ristow and Rühl (1997)). Note that increasing the bandwidth
typically enhances the accuracy of approximation (5) by an order of magnitude and increases the maxi-
mum imaged dip angles – see Fig. 2 where dispersion and error curves areplotted for 2D,M = 1, . . . ,5,
ω = 30Hz,ε = .45,δ = .2,vp = 1000,φ = 60◦. Although the complexity of solving a system of linear
equations with a 2M +1-diagonal matrix grows quadratically withM, the quadratic part is contributed
by the factorisation algorithm that can be performed once for each model, but the numerical complexity
of backsubstitution that is performed at run-time grows only linearly. To getrid of parasitic modes aris-
ing due to arbitrary behaviour of the approximation (5) outside of the passband, at each depth step we
filter out all energy beyond the maximal passband of operators (2). Tests that we have run so far only
required a single application of a wavenumber-domain filter, even for modelswith sharp contrasts. The
numerical complexity of the resulting algorithm per depth step, on the assumptionthat only one filter
application is required, can be be roughly estimated as

2FFT(Nx,Ny)+32MNxNy (6)

in the notations of equation (4).
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Implementation and Examples

We have implemented the above algorithms in the framework of 2D and 3Dshot-record migration in
highly parallelised Fortran 2003 codes. The implicit finite-differencing turns out to be more efficient at
the same dip performance for larger values ofω/vp, while the explicit extrapolation requires very short
operators (L = 1,2) for small temporal frequencies and large velocities. However, the sizeof implicit
finite differences grows slower with maximum dip than the aperture of the explicit extrapolator, making
it the method of choice where dip performance close to 90◦ is required (see Fig. 2). The two methods
can be successfully combined in one code, with implicit finite differences used to propagate waves
through top layers of smaller seismic velocities, and the explicit extrapolator taking over whenever the
ratio ω/vp makes it a more economical choice. Fig. 3 and 4 demonstrate the results of applying a
hybrid 60◦ maximum dip implicit-explicit migration code to the 2007 BP TTI Synthetic Model. Fig. 3
shows fragments of the density model for a salt body and an anticlinal structure. Fig. 4 shows the
results of hybrid migration, demonstrating a perfect agreement between reflector locations on the density
model and the image. Note, however, that the dip limitation results in poor performance of the one-way
extrapolation close to salt flanks. Increasing the maximum dip angle doesn’talways help, as accurate
imaging of some events requires imaging of overturning waves (see Albertin et al (2002)). However,
in terms of performance, the algorithms presented here offer an order-of-magnitude speed-up compared
to the existing implementations of RTM. One-way methods can be easily combined withcoordinate
rotation to achieve partial imaging of dips beyond 90◦ in one direction (see Shan et al. (2007)). Moreover,
our method can be combined with a curvilinear coordinate transformation (e.g.,along a ray path) for
beam-wave imaging (see Albertin et al (2002); Brandsberg-Dahl and Etgen (2003)).

Conclusions

We have described computationally efficient and stable depth extrapolation methods based on a one-
way equation for TTI media. Explicit and implicit methods can be combined in a hybrid technique to
speed up depth migration and reduce splitting errors. One-way extrapolation in TTI media can be used
in beam-wave imaging methods to achive partial imaging of steep and overturning events. All that, in
combination with an order-of-magnitude lower cost than that of RTM, makes the proposed methods
ideal for target-oriented imaging and where high-speed data turnaroundis of higher importance than the
multipathing capabilities of RTM.
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Figure 1 3D explicit extrapolator Πα ,C(τ) (left) and approximation error (right). The colour scale
applies to the right plot only.

Figure 2 2D implicit extrapolator curves (left) and approximation error (right, logarithmic scale) for
various matrix bandwidth values.

Figure 3 BP TTI model: density ρ for salt and anticlinal regions.

Figure 4 BP TTI model: 60◦ maximum dip, one-way shot-record migration image.
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