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SUMMARY

We present a technique for efficient one-way wave-equation migration of seismic data in Tilted
Transversally Isotropic Media. The technique combines explicit and implicit wavefield extrapolation, and
achieves good imaging results at a fraction of the computational cost of Reverse Time Migration.
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I ntroduction

Cost-effective and accurate imaging tools for anisotropic media are beganiimtegral part of the
standard imaging workflow. While methods based on Reverse Time Migratiov)Rave great advan-
tages over one-way methods in terms of handling multipathing, overturnedtrefis, internal multiples
and arbirary dips, one-way methods are still capable of deliveringrfipdiopose solutions at a fraction
of the computational cost of RTM. We propose two different algorithmslémth extrapolation in Tilted
Transversally Isotropic (TTI) media, using explicit (see e.g. Hale ()9@id implicit (see e.g. Ristow
and Ruhl (1997); Nolte (2008)) finite differencing. Both approadiese advantages and can be com-
bined in a highly efficient migration code. We demonstrate that the implicit methredsmied in Shan
(2007) can be generalised to handle dips close toa®@ modest increase in computational complex-
ity, and propose a framework for generating and applying very spattad explicit extrapolators with
wavenumber-domain filters that successfully complement implicit methods tovachieonsiderable
migration speed-up.

TTI Dispersion Relation

We start from the 2-dimensional dispersion relation for plane wavesgsaijng in a Vertically Transver-
sally Isotropic (VTI) medium with coordinateshorizontal) andwv (vertical):

W’ 2, 12 2 (K +KD) 2ek? 2 8(e— o)k,
g T Xll \/<”f-<kr2+l«%>> [0+
This dispersion relation can be obtained from the expression for theityetd@ plane wave in a VTI
medium (see Tsvankin (1996); Shan (2007)). In equatiornvgliy the vertical pressure wave velocity,
is a constant, and, d are the Thomsen parameters. As a TTI medium is just a rotated VTl medium, we
introduce two additional angle parameters: the azinguénd tilt ¢ of the TI symmetry axis. Expressing
the wavenumberk, andk,, via ky, ky,k; and using (1), we can solve the vertical wavenunibers an
implicit function ofk, andk, and the medium parameteks = K(w/vp, €,0, @, P, ke, ky). The function
K is multivalued, but we will always use only one branch (hence the ramaevay equation) that we
compute and tabulate numerically. Depth extrapolation of a wavefiebdx, y, z) in a heterogenous TTI
medium consists in solving the following pseudo-differential operatortémua

(1)

1 1
du/dz=iK (w/vp&&, 2),£(%.%,2),6(%,%,2), 0% ,2), (%3, z>,ia/ax,ia/ay) u 2)

where medium parameters are arbitrary functions of the subsurfacdiai®sx, y, z, and indices over
the operators indicate order.

Explicit Extrapolator

In explicit extrapolation, we approximate the explidépth-marching schemau(x, y, z+Az) = 2% u(x,y, 2)
with a finite-difference operatoeXplicit extrapolator) for every set of medium parameteogvy, £,0, @,

UXY.z+A2) = 5 am (w/Vp,,8,0,y)e/MB0INy(x y.2) = P(9/9%,0/9y)u(xy.2) (3)

Im[,[If<L

wherelL is the aperture of the explicit extrapolator (3). Given a maximum imaged dip armleve

call the set of point§ly = {(ky,ky) : (K2 + kﬁ)/k% <=tarfa} the passband, and its complement — the
cutband . We require the finite-difference operator in the right-hand side of (3)ate an absolute
value of strictly less than one in the wavenumber doman over the cutbandfoticursy the cutband
modes to decay with depth. The explicit extrapolator (3) can be constrinctgedariety of ways, how-
ever, the main challenge is to achieve accuracy over the passband laitity $ta all wavemodes while
minimising the aperturé. This can be achieved through the solution of a constrained convex opti-
misation problem| exp{iAzK} — P(iky,iky)|| — min  ky,ky € Mg, |P(iky, iky)| < H(ke, ky) ke, ky €T
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whereH is a barrier function defined over the cutband, controlling the cutband shoale of de-
cay. Solving this problem with the constraint over the entire cutband couldittiensome and result
in larger operator apertures. We propose to impose the constraint ordysoreller circular region
C(1) = {(ke, ky) © 4 /k§+k§, <= (14 T1)diam(Mg) /2} with T = T(w/vp,&,0, ¢, P) > 0 (see Fig. 1 for
an example foo = 60°, w =30Hz,L =3,7= .2, = 45,0 = .2,vp = 1000,90 = 60°, y = 40°). The
effect of this is that explicit extrapolators built for different values ofdinen parameters may still have
substantially overlapping stability domains. The resulting spatial finite-diftey@perators (3) can then
be applied in groups of operators that are stable over the largesepassbllowed by a single cutband
filter application per group. The computational cost of this algorithm pethdgtpp (excluding the one-
off computation of the finite-difference coefficients of (3)) in the absasfcsharp velocity contrasts can
be roughly estimated as

{maxvp(x,y, 2)/ <(1+ T)minvp(X, Y, z)> + 1] x FFT(Ny, Ny) + (2L + 1)2NgNy (4)
(xy) (xy)

whereNy, Ny are inline and crossline grid sizes, and FFT denotes the cost of a twogionahFFT. In
case of sharp velocity contrasts (e.g., in the presence of salt bodids¥tiverm in equation (4) should
be replaced with a sum of similar terms corresponding to each velocity rénglatvely smooth lateral
variation near a reference velocity. Our tests indicate that a pre-compaégficient look-up table
containing single-precision variable-aperture explicit 3D extrapolateffic@ents, of a size not larger
than the memory required for a 3D velocity model, is adequate for accuratgadlaton of extrapolator
coefficients at run-time. It should be noted that for a fixed maximunodipe aperturd. grows with
the ratiow/v,. However, an appropriate choice ofand the barrier functioid allows us to achieve
reasonably compact operators even for large values of the ratio gsele F

Implicit Extrapolator

We approximate the right-hand side of equation (2) straight with a finiterdiffe operator, rather than
a rational function of wavenumbers. For example, in 2D we have:

m=N; ) m=N, -
K(@/vp,£,8,0.k) ~ 5 an(w/vp,e,8,@)e™/ 5 br(w/vp.e,8,9)d™™  (5)
m=—Nyg m=—N,

The coefficientsa, andby, in equation (5) can be computed using nonlinear least squares ovet the se
Mg for a specified maximum dip angke. If M = max(Ny,N;) is the problembandwidth then sub-
sequent solving of (2),(5) using trapezoidal rule is equivalent (in tleedimensional case) to solving

a system of linear equations with 82+ 1-diagonal matrix. Thé&U factorisation of such a matrix
can be performed in roughly\gM? operations (see e.g. Demmel (1997)), and subsequent solution by
backsubstitution requires roughl\N@V operations. For 3D, assumidx = Ay, we can approximate
equation (2) using multiway splitting (see Ristow and Rihl (1997)). Note teat@sing the bandwidth
typically enhances the accuracy of approximation (5) by an order of itng@grand increases the maxi-
mum imaged dip angles — see Fig. 2 where dispersion and error curvelstee for 2DM =1,...,5,

w = 30Hzg = .450 = .2vp, = 10009 = 60°. Although the complexity of solving a system of linear
equations with a [ + 1-diagonal matrix grows quadratically witl, the quadratic part is contributed

by the factorisation algorithm that can be performed once for each madéhdonumerical complexity

of backsubstitution that is performed at run-time grows only linearly. Taigetf parasitic modes aris-

ing due to arbitrary behaviour of the approximation (5) outside of the passtat each depth step we
filter out all energy beyond the maximal passband of operators (2)s ffest we have run so far only
required a single application of a wavenumber-domain filter, even for madtkisharp contrasts. The
numerical complexity of the resulting algorithm per depth step, on the assuntp#bonly one filter
application is required, can be be roughly estimated as

2FFT(Ny, Ny) + 32MNNy (6)

in the notations of equation (4).
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Implementation and Examples

We have implemented the above algorithms in the framework of 2D ansh8Brecord migration in
highly parallelised Fortran 2003 codes. The implicit finite-differencinggwut to be more efficient at
the same dip performance for larger valuesugi/,, while the explicit extrapolation requires very short
operatorsl( = 1,2) for small temporal frequencies and large velocities. However, theosiaplicit
finite differences grows slower with maximum dip than the aperture of the éxgtizapolator, making

it the method of choice where dip performance close tbi90equired (see Fig. 2). The two methods
can be successfully combined in one code, with implicit finite differenced ts@ropagate waves
through top layers of smaller seismic velocities, and the explicit extrapolatoigtaker whenever the
ratio w/v, makes it a more economical choice. Fig. 3 and 4 demonstrate the resultslyingmp
hybrid 60 maximum dip implicit-explicit migration code to the 2007 BP TTI Synthetic Model. Fig. 3
shows fragments of the density model for a salt body and an anticlinatwsteucFig. 4 shows the
results of hybrid migration, demonstrating a perfect agreement betwidertoelocations on the density
model and the image. Note, however, that the dip limitation results in poor peafae of the one-way
extrapolation close to salt flanks. Increasing the maximum dip angle d@dsmays help, as accurate
imaging of some events requires imaging of overturning waves (see Albémin(2002)). However,

in terms of performance, the algorithms presented here offer an oradleagnitude speed-up compared
to the existing implementations of RTM. One-way methods can be easily combinedouattinate
rotation to achieve partial imaging of dips beyond 80one direction (see Shan et al. (2007)). Moreover,
our method can be combined with a curvilinear coordinate transformation #éogg a ray path) for
beam-wave imaging (see Albertin et al (2002); Brandsberg-Dahl sgehE2003)).

Conclusions

We have described computationally efficient and stable depth extrapolatitmasebased on a one-
way equation for TTI media. Explicit and implicit methods can be combined in adhyéchnique to
speed up depth migration and reduce splitting errors. One-way extrapalafld’| media can be used
in beam-wave imaging methods to achive partial imaging of steep and ovegwvemts. All that, in
combination with an order-of-magnitude lower cost than that of RTM, makeptbposed methods
ideal for target-oriented imaging and where high-speed data turnar®ohdigher importance than the
multipathing capabilities of RTM.
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Figure 1 3D explicit extrapolator My,C(7) (left) and approximation error (right). The colour scale
appliesto the right plot only.
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Figure 2 2D implicit extrapolator curves (left) and approximation error (right, logarithmic scale) for
various matrix bandwidth values.

Figure 3 BP TTI model: density p for salt and anticlinal regions.

Figure 4 BP TTI model: 60° maximum dip, one-way shot-record migration image.
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