Motivation: improved reservoir monitoring

- Depends on successful tracking of fluid movement
- Conversion of time shifts \Rightarrow impedance changes
- Requires manual interpretation
- More automated approaches based on, e.g., WE image-difference tomography (Albertin et al., 2006; Maharramov and Albertin, 2007)
- 4D FWI is a potentially powerful 4D tool (Routh et al., 2012) but sensitive to repeatability issues (Asnaashari et al., 2012; Zheng et al., 2011; Rakness et al., 2013)
- Goal: design robust 4DFWI, less sensitive to repeatability issues

Existing 4D FWI methods

► Parallel Difference FWI (iterated) (Miller et al., 2007)

BASE FWIⁿ \Rightarrow m_b > MON FWIⁿ \Rightarrow m_m > $\Delta \mathbf{m} = \mathbf{m}_m - \mathbf{m}_b$ **m**_{INIT}

- Sequential Difference FWI (iterated) (Oldenborger et al., 2007)
- **BASE FWI**^{*n*} \Rightarrow **m**_{*b*} \longrightarrow **MON FWI**^{*n*} \Rightarrow **m**_{*m*} **m**_{INIT} $\Delta \mathbf{m}$

► Double Difference (Watanabe et al., 2004)

 $\| (\mathbf{M}_m^s \mathbf{u}_m - \mathbf{M}_b^s \mathbf{u}_b) - (\mathbf{M}_m \mathbf{D}_m - \mathbf{M}_b \mathbf{D}_b) \| \rightarrow \min,$ (1)where $\mathbf{M}_{m,b}^{(s)}$ are equalization or measurement operators, and $\mathbf{u}_{m,b}$, $\mathbf{D}_{m,b}$ are synthetic and actual data.

Joint 4DFWI: simultaneous inversion and cross-updating

► NEW: Simultaneous FWI of baseline and monitor with difference regularization (Maharramov and Biondi, 2013; Ayeni and Biondi, 2012):

$$\sum_{i=1}^{2} \alpha_{i} \| \mathbf{W}_{d}^{i} [\mathbf{D}_{i} - \mathbf{u}(\mathbf{m}_{i})] \|^{2} + \alpha \| \mathbf{R} \mathbf{W}(\mathbf{m}_{2} - \mathbf{m}_{1} - \Delta \mathbf{m}^{P}) \|^{2}$$

NEW: Cross-updating Approximation to the Simultaneous FWI (Maharramov and Biondi, 2013):

BASE FWI \Rightarrow **m**_b \longrightarrow **MON FWI** \Rightarrow **m**_m m_{INIT} $\mathbf{m}_m \leftarrow \mathsf{MON} \mathsf{FWI} - \mathbf{m}_b \leftarrow \mathsf{BASE} \mathsf{FWI}$

L.08e+02

1.17e+02 960

-3.30e+01

4.20e+01

1.92e+02

True difference and inverted target area

Geophysics Department, Stanford University, Stanford, California, USA

Joint 4DFWI with model difference regularization

Musa Maharramov (maharram@stanford.edu) and Biondo Biondi (biondo@sep.stanford.edu), Stanford University

(2)(3)

	⊳	1.44e+03
	-	1.94e+03
	. 480 . 960	2.44e+03
		2.94e+03
		3 .44e+0 3
		3.94e+03
0	- 1440	4.44e+03
and a second		4,94e+03
		5.44e+03
976	7176	

Why it works?

Assuming that the error in the baseline model estimate $\widehat{\mathbf{m}}_b$ contains a component $\delta \mathbf{m}_m$ and the error in the monitor model estimate $\widehat{\mathbf{m}}_m$ contains a component $\delta \mathbf{m}_b$, the Parallel Difference yields

$\widehat{\Delta \mathbf{m}}$	—	$\widehat{\mathbf{m}}_m$ -	$-\widehat{\mathbf{m}}_bpprox$	$\Delta \mathbf{m}$ -
$\delta \mathbf{m}_{b}$	\in	null	$\left(\frac{dF}{d\mathbf{m}}(\mathbf{m})\right)$	(b), $($

The Sequential Difference propagates $\delta \mathbf{m}_m$ into $\widehat{\mathbf{m}}_m$, resulting in

 $\widehat{\Delta \mathbf{m}} = \widehat{\mathbf{m}}_m - \widehat{\mathbf{m}}_b \approx \Delta \mathbf{m} + \delta \mathbf{m}_b + \delta \mathbf{m}_m - \delta \mathbf{m}_m = \Delta \mathbf{m} + \delta \mathbf{m}_b.$ The cross-updating and simultaneous inversion propagate the error components $\delta \mathbf{m}_m$ and $\delta \mathbf{m}_b$ into *both* models, canceling them in the difference:

 $\widehat{\Delta \mathbf{m}} = \widehat{\mathbf{m}}_m - \widehat{\mathbf{m}}_b \approx \Delta \mathbf{m} + \delta \mathbf{m}_b$ where $\Delta \mathbf{m}$, $\widehat{\Delta \mathbf{m}}$ are the *recoverable* and estimated model differences.

$$\delta \mathbf{m}_{b} - \delta \mathbf{m}_{m},$$

 $\delta \mathbf{m}_{m} \in \operatorname{null}\left(\frac{dF}{d\mathbf{m}}(\mathbf{m}_{m})\right).$
(4)

(5)

$$+\delta \mathbf{m}_m - \delta \mathbf{m}_m - \delta \mathbf{m}_b = \Delta \mathbf{m},$$
 (6)

1440 3576

1440

480

960

1440

480

960

1440

Summary and perspectives

- synthetic data.
- W in (3) can be constructed from oscillations of alternating cross-updates (Yang et al., 2014)
- Next: test the simultaneous 4DFWI (2,3) with W from geomechanical and rock physics constraints.

4DFWI of noisy data (14 and 7 dB SNR)

(a) parallel difference; (b) sequential difference; (c) cross-updating; (d) simultaneous inversion; (e) double-difference.

Both cross-updating and simultaneous 4DFWI perform well on noisy