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Abstract

This report expands on earlier reports to provide a detailed descrip-
tion of reservoir and production/injection well simulation experiments by
the version 2.0 of OOMP RS Object-Oriented Multi-Solver reservoir simu-
lator. I describe the polymorphic multi-phase simulation framework im-
plemented in the simulator software, and pay special attention to how
the proposed framework obviates the need for customizing the back-end
solver for specific modeling cases (i.e., two-phase or black oil) or alterna-
tive finite-difference solvers.

1 Overview

We begin with a detailed statement of the governing partial differential
equations and boundary conditions. In this report we include produc-
tion/injection wells in the governing equations, allowing arbitrary time-
dependent well controls of flow-rates and (maximum/minimum) bottom-
hole pressures. Albeit the specific two-phase simulator implementation in
OOMP RS provides for single-completion vertical wells, we discuss multiple-
completion wells and their impact on the FIM/IMPES Jacobian and resid-
ual computation.

Once we have formulated a closed system of equations, we list quan-
tities and values that are specified as inputs – e.g., the capillary pressure
function, viscosity, fluid and rock compressibilities and densities. Once
all of the known and unknown functions have been listed, we formulate
a boundary-value problem for the system of governing equations that de-
scribes our reservoir system.

Our next step will be to introduce physical units for all of the key
dimensional quantities involved in the simulation1, and the associated
conversion factors, if applicable. This is done specifically for the purpose
of enabling a formulation of discrete analogues of the governing partial
differential equations that would allow us to simulate the evolution of
reservoir parameters in reservoir or customary units.

Having exhaustively identified all the unknowns, coefficients and con-
version factors associated with our PDEs, we proceed to discretize the
equations for the purpose of approximating them on a finite-volume grid.
Differential equations lend themselves to multiple discretizations into finite-
difference equations, depending on the desired accuracy and stability char-
acteristics and employed approximation techniques. This naturally leads
to the discussion of two principal discretization methods and the associ-
ated numeric algorithms for solving discrete boundary-value problems for
the obtained finite-difference equations.

1except for the quantities that have the “dimension” of fraction or part
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2 GOVERNING EQUATIONS Report and OOMP RS Simulator

With the algorithms and underlying mathematical techniques defined,
we proceed to describing the data structures that we use in the second
version of our OOMP RS reservoir simulator to store and manipulate all of
the known and unknown quantities arising in the solution of the reservoir
simulation finite-difference problems.

A separate section is dedicated to the numerical study of the two
reference and one test cases provided as part of the Phase 3b problem de-
scription. A special driver program has been developed specifically for this
task, that demonstrates the two key modules of OOMP RS – multiphase.F90

and twophase.F90 – on these examples. In addition to providing com-
puted residuals and the Jacobian for each of the reference and test cases,
we demonstrate stability and convergence of both FIM and IMPES im-
plementations of our reservoir simulator.

We conclude the report by providing code samples for the algorithms
described earlier in the report, demonstrating all the key steps and inter-
action with the data structures. We describe key object-oriented coding
techniques that allow a straightforward extension of our approach to im-
plement alternative reservoir models – e.g., the black oil or even general
multicomponent models – and numerical algorithms – e.g. using GMRES
(see [10]) instead of the conjugate residuals used in the current version of
OOMP RS.

This report adheres to the object-oriented Fortran 2003 notation (see
[8]) as this is the language used in our reservoir simulator.

2 Governing Equations

Our objective is to develop a reservoir simulator for modeling a two-
component two-phase oil-water system. In our treatment of the governing
equations we generally follow [2], citing any deviations as necessary. We
consider the two phases as immiscible (see [2]), assuming that each com-
ponent can exist only in its primary phase. This results in a significant
simplification of the resulting equations while still allowing for upgrading
to a fully-fledged black-oil model at a later time. The relative ease of such
an upgrade is due to the fact that in the black-oil system only the gas
component is allowed to be present in other phases, often assuming no
gas dissolved in the water phase.

Since the requirement of this phase is to design a reservoir simulator for
a vertical 2D reservoir, we will include gravity terms in the formulation2.

The oil conservation equation for a two-phase two-component oil-water
system with immiscible components is

∂

∂x

[
k
λo
Bo

(
∂Po
∂x
− γo

∂D

∂x

)]
+

∂

∂z

[
k
λo
Bo

(
∂Po
∂z
− γo

∂D

∂z

)]
=

∂

∂t

(
φ
So
Bo

)
+ q̃o, (1)

2Note that both the extensible multiphase framework (multiphase.F90) and the two-phase
implementation (twophase.F90) in OOMP RS have been been developed for tilted 3D grids
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where λ = kro
µo

is the mobility, µo – viscosity, Bo – formation volume
factor and kro – relative permeability for the oil component. The coeffi-
cient k is the geometric rock permeability (independent of fluid),φ is the
rock porosity and γo is the gravitational constant for oil. The unknown
quantities in equation (1) are the oil phase pressure Po = Po(x, z, t) and
oil component saturation So = So(x, z, t) – all the other quantities are
specified as either constants or functions of the unknowns. The well pro-
duction/injection term q̃o in this report is a function of state variables, we
will relate this term to other known and unknown quantities through well
modeling equations. Function D in (1) is the true vertical depth (TVD)
of the subsurface point (x, z). This is required to model tilted reservoir
grids where z may not represent the TVD. Water conservation equations
are formulated in an analogous way:

∂

∂x

[
k
λw
Bw

(
∂Pw
∂x
− γw

∂D

∂x

)]
+

∂

∂z

[
k
λw
Bw

(
∂Pw
∂z
− γw

∂D

∂z

)]
=

∂

∂t

(
φ
Sw
Bw

)
+ q̃w, (2)

where the subscript “w” denotes the corresponding parameter for the
water component or phase. We have two conservation equations (1) and
(2) and seek four unknowns – oil and water pressures and saturations.
We complement the mass balance equations with the capillary pressure
relationship:

Pc(Sw) = Po − Pw, (3)

where the difference between the pressures of the oil and water phases
(capillary pressure) is assumed to be a known3 function of the water com-
ponent saturation. Note that in case we modelled more than two com-
ponents/phases, capillary-pressure relations would be required for each
pair of phase pressures, that might be, in principle, functions of multiple
saturations. In our two-phase model, however, we simply assume that a
capillary pressure is specified as a tabulated or power function of water
saturation.

The final equation that allows us to close the system of governing equa-
tions relates the component saturations and is the obvious requirement
that the saturations add up to 1:

So + Sw = 1. (4)

Now, equations (1,2,3,4) form a closed system of four equations for four
unknowns. Since (3) and (4) are extremely simple, we can analytically
reduce the number of unknowns to two. For our simulation purposes we
will use pressure of the oil phase Po and saturation of the water component
Sw as the primary variables. This is done so that we allow the “water
break” scenarios when the capillary pressure is zero. After the substitution
of Pw and So as functions of Po and Sw, we get:

3often empirically derived
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∂

∂x

[
k
λo
Bo

(
∂Po
∂x
− γo

∂D

∂x

)]
+

∂

∂z

[
k
λo
Bo

(
∂Po
∂z
− γo

∂D

∂z

)]
=

∂

∂t

(
φ

1− Sw
Bo

)
+ q̃o, (5)

and

∂

∂x

[
k
λw
Bw

(
∂(Po − Pc(Sw))

∂x
− γw

∂D

∂x

)]
+

∂

∂z

[
k
λw
Bw

(
∂(Po − Pc(Sw))

∂z
− γw

∂D

∂z

)]
=

∂

∂t

(
φ
Sw
Bw

)
+ q̃w, (6)

– a closed system of two PDE for two unknown functions Po(x, z, t) and
Sw(x, z, t) that we will solve in our simulation.

Following is a summary of our assumptions with regard to the known
functions that appear in (5) and (6):

� k = k(x, y, z): geometric permeability is a known function of the
reservoir points; note that in OOMP RS we implement an arbitrary
anisotropic geometric permeability, while the abstract multiphase
framework allows for anisotropic permeability tensor with principal
axes unaligned with the grid axes – see the type-bound procedure
geometry%perm();

� µo = µo(Po): oil viscosity is either constant or a function of oil
pressure4;

� kro = kro(Po): oil relative permeability is either constant or a func-
tion of oil pressure;

� µw = const: water viscosity is either constant or a function of water
pressure;

� krw = const: water relative permeability is either constant or a
function of water pressure;;

� φ = φ(Po): rock porosity is a function of oil pressure; we will assume
that φ = φ0+cR(Po−P ref ) where φ0 is the porosity at some reference
oil pressure P ref and cR is the rock compressibility.

� Pc = Pc(Sw): capillary pressure is given as some tabulated or power
function of water saturation;

� bo = 1/B0 = bo(Po): the inverse of oil formation volume factor is a
function of oil pressure; we will assume that bo = brefo + cfo(Po −
P ref ) where brefo is the inverse formation volume factor at some
reference pressure P ref and cfo is the fluid compressibility of oil;

� bw = 1/B0 = bw(Pw): the inverse of water formation volume factor
is a function of water pressure; we will assume that bw = brefw +
cfw(Pw−P ref ) where brefw is the inverse formation volume factor at
some reference pressure P ref and cfw is the fluid compressibility of
water; in some simulations we may assume brefw = 1, cfw = 1;

4viscosity obviously depends on the temperature but thermal effects are neglected in this
study
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� ρo : density of the oil component at some known fixed conditions
(i.e., temperature and pressure); this may be the density at the
stock tank conditions or this may be the density at some reference
pressure P ref ; if this reference pressure is the same as in the above
formula for the oil formation volume factor, then brefo = 1;

� ρo : density of the water component at some known fixed conditions
(i.e., temperature and pressure); this may be the density at at some
reference pressure P ref ; if this reference pressure is the same as
in the above formula for the water formation volume factor, then
brefw = 1.

Note that equations (1) and (2)express mass balance relation where we
get rid of the common factor – the density of the respective component
at reference conditions. However, we still require values of the densities
at reference conditions for the gravitational terms.

We will assume zero-flow boundary conditions at the reservoir bound-
aries5 – i.e.

∇(Po − γoD)(x = xmax, z) = ∇(Po − γoD)(x = xmin, z) =

∇(Po − γoD)(x, z = zmax) = ∇(Po − γoD)(x, z = zmin) = 0,

∇(Pw − γwD)(x = xmax, z) = ∇(Pw − γwD)(x = xmin, z) =

∇(Pw − γwD)(x, z = zmax) = ∇(Pw − γwD)(x, z = zmin) = 0. (7)

Well terms (source or sink) are described later in the report. And finally,
we assume the oil pressure and water saturation known at some initial
time t = t0:

Po(x, z, t = t0) = P 0
o (x, z), Sw(x, z, t = t0) = S0

w(x, z). (8)

Equations (5) and (6) together with the boundary and initial condi-
tions (7,8) pose a boundary-value problem, and solving this problem will
be the basis of our reservoir simulation.

3 Units

We use reservoir or customary units as the principal system of measure-
ment units in our simulation. The unit of length in this system is foot
(ft), mass – pound (lb=lbm), force – pound-force (lbf), pressure – pound
per square inch (psi). After we multiply the left- and right-hand sides
of equations (5) and (6) by the unit volume for finite-volume discretiza-
tion in the next section, we will apply the following conversion factors to
various components in (5) and (6):

� the gravitational constant will be computed as 1
122

ρlbl
g

32.2
where ρl

is the density at reference pressure and bl is the inverse formation
volume factor for oil (l = o) or water (l = w); for the reservoir units,
g = 32.2;

5for a rectangular reservoir; note that the present technique can be used without signifi-
cant modifications for more complex reservoir shapes by making the geometric permeability
very small outside of the true reservoir boundaries, however that may adversely impact the
numerical convergence

6 M Maharramov



4 DISCRETIZATION Report and OOMP RS Simulator

� the transmissibility/flow rate conversion factor α = 0.001127 ≈
1./887.5 will be applied at the geometric permeability coefficient
k in both equations;

� the accumulation terms in the right-hand side of (5) and (6) will be
divided by the conversion factor of 5.615 to account for the conver-
sion from the standard cubic feet to standard barrels as all produc-
tion and injection rates in our simulation are specified in barrels.

We do not need to explicitly incorporate the constant conversion fac-
tors into our equations so long as we apply them during the implementa-
tion. Note, however, that the gravitational constant depends on pressure
of the corresponding phase, and hence requires special treatment during
the formation of the Jacobian matrix. We could get rid of the gravita-
tional terms by introducing new variables, however, that would result in
additional complications when manipulating reservoir parameters that are
functions of pressure6.

4 Discretization

In version 2 of OOMP RS reservoir simulator we use the simplified assump-
tion of a block-centered spatial grid (see [2])7. The abstract framework
multiphase.F90 allows for arbitrary non-uniform rectangular block-centered
grids (type geometry), while the specific implementation twophase.F90

provides a uniform-grid implementation with ∆x 6= ∆y 6= δz in the type
regular. Note, however, that even the specific two-phase implementation
of the simulation routines do not directly use the type regular and hence
we can easily depart from the uniformity constraint by replacing regular

with an alternative descendant of geometry. Note the same holds true for
the other key simulator classes: oilwater (extends fluids), psat (extends
model), singlecompletion (extends wells) and twophase jacobian (ex-
tends jacobian). Each implementation is directly accessed only by self
and the master program, otherwise any specific functionality not imple-
mented in multiphase.F90 is invoked via polymorphism (see [8]).

It was one of the requirements of Phase 3a that a detailed description
of the discretization for equations (5,6) be provided, specifying the com-
putation of Jacobian components and the corresponding residual both for
the Fully Implicit (FIM) and Implicit Pressure-Explicit Saturation (IM-
PES) methods. As will be evident from subsequent sections, the approach
implemented in our reservoir simulator is different from direct discretiza-
tion of (5,6):

We recast the reservoir simulation problem as a more general mul-
tiphase flow simulation with arbitrary state variables, and discretize
the resulting redundant equations. A discretization of (5,6) is then
achieved by substituting the actual state variables (oil pressure and
water saturation), flow and well terms into the more general system.

6that would become more complicated functions of the new variables
7as opposed to arbitrary unstructured grids
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Albeit the general N -component multiphase counterpart of system
(5,6) is more challenging to solve than the two-phase system, the dis-
cretization of the multiphase system is easier to implement numerically
as it requires less context-dependent branching. However, at the numerical
solution stage, the general multiphase Jacobian and residual are transpar-
ently reduced to their much smaller two-phase counterparts and thus we
take advantage of the simplifications offered by the two-phase model.

Despite the fact that our discretization approach is different from di-
rect application to (5,6), we still describe two discretization approaches
for the reduced system – mostly to demonstrate the difference with our
approach and reveal the sparsity pattern of the resulting Jacobian.

Following [2], we discretize (5) using first-order differentiation in time
and second order differentiation8 in space as follows:

(Υx
o)i−.5,j

[
(Pn+1
o )i−1,j − (Pn+1

o )i,j − (γo)i−.5,j(Di−1,j −Di,j)
]

+

(Υx
o)i+.5,j

[
(Pn+1
o )i+1,j − (Pn+1

o )i,j − (γo)i+.5,j(Di+1,j −Di,j)
]

+

(Υz
o)i,j−.5

[
(Pn+1
o )i,j−1 − (Pn+1

o )i,j − (γo)i,j−.5(Di,j−1 −Di,j)
]

+

(Υz
o)i,j+.5

[
(Pn+1
o )i,j+1 − (Pn+1

o )i,j − (γo)i,j+.5(Di,j+1 −Di,j)
]

=

∆x∆y∆z

∆t

[
−(φb0)n+1(Sn+1

w − Snw) + (1− Snw)(bn+1
o cR + φncfo)(P

n+1
o − Pno )

]
,

(9)

where the oil transmissibilities in x and z directions are defined as follows:

(Υx
o)i−.5,j =

(
k∆y∆z

∆x
× kro
Bo(P ko )µo(P ko )

)
x=xi−δx

−
i ,z=zj

,

(Υx
o)i+.5,j =

(
k∆y∆z

∆x
× kro
Bo(P ko )µo(P ko )

)
x=xi+δx

+
i ,z=zj

, (10)

and

(Υz
o)i,j−.5 =

(
k∆y∆x

∆z
× kro
Bo(P ko )µo(P ko )

)
x=xi,z=zj−δz

−
j

,

(Υz
o)i,j+.5 =

(
k∆y∆x

∆z
× kro
Bo(P ko )µo(P ko )

)
x=xi,z=zj+δz

+
j

, (11)

where e.g. δx−i and δx+i are the distances from the x-coordinate of the
centre of the i-th block xi to the left and right block boundaries, respec-
tively. For a block-centered grid, δx+i−1 + δx−i = xi − xi−1

9 at internal
block boundaries. The meaning of the pressure time step k is explained
below. All the terms in the right-hand side of (9) that are evaluated at
time step n+ 1 are computed using the pressure at time step n+ 1. It is
important that k may not be equal to n+ 1, and this will later lead to a
discussion of various flavors of the IMPES method.

Note that the unknown oil pressure Pn+1
o may appear on both sides of

(9), both in linear and nonlinear terms. Hence, accurate solution for the
pressure would require the application of some nonlinear equation solver.

8second order for uniform grids and constant coefficients only
9with similar equalities along other axes
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Likewise for the discretized water conservation equation we have:

(Υx
w)i−.5,j

[
(Pn+1
o )i−1,j − (Pn+1

o )i,j − (γw)i−.5,j(Di−1,j −Di,j)
]

+

(Υx
w)i+.5,j

[
(Pn+1
o )i+1,j − (Pn+1

o )i,j − (γw)i+.5,j(Di+1,j −Di,j)
]

+

(Υz
w)i,j−.5

[
(Pn+1
o )i,j−1 − (Pn+1

o )i,j − (γw)i,j−.5(Di,j−1 −Di,j)
]

+

(Υz
w)i,j+.5

[
(Pn+1
o )i,j+1 − (Pn+1

o )i,j − (γw)i,j+.5(Di,j+1 −Di,j)
]
−

(Υx
wP
′
c(S

m
w ))i−.5,j [(Smw )i−1,j − (Smw )i,j ]−

(Υx
wP
′
c(S

m
w ))i+.5,j [(Smw )i+1,j − (Smw )i,j ]−

(Υz
wP
′
c(S

m
w ))i,j−.5 [(Smw )i,j−1 − (Smw )i,j ]−

(Υz
wP
′
c(S

m
w ))i,j+.5 [(Smw )i,j+1 − (Smw )i,j ] =

∆x∆y∆z

∆t

{[
(φbw)n+1 − SnwφncfwP ′c(Snw)

]
(Sn+1
w − Snw) +

[
Snwb

n+1
w cR + Snwφ

ncfw
]

(Pn+1
o − Pno )

}
,

(12)

with water transmissibilities defined as

(Υx
w)i−.5,j =

(
k∆y∆z

∆x
× krw
Bw(Pc(Smw )− P ko )µw

)
x=xi−δx

−
i ,z=zj

,

(Υx
w)i+.5,j =

(
k∆y∆z

∆x
× krw
Bw(Pc(Smw )− P ko )µw

)
x=xi+δx

+
i ,z=zj

, (13)

and

(Υz
w)i,j−.5 =

(
k∆y∆x

∆z
× krw
Bw(Pc(Smw )− P ko )µw

)
x=xi,z=zj−δz

−
j

,

(Υz
w)i,j+.5 =

(
k∆y∆x

∆z
× krw
Bw(Pc(Smw )− P ko )µw

)
x=xi,z=zj+δz

+
j

. (14)

All the terms in the right-hand side of (12) that are evaluated at time step
n+ 1 are computed using the pressure at time step n+ 1 and saturation
at time step m.

If we choose m = k = n + 1 in (9-14) then solving the resulting
system of non-linear equations is called the Fully Implicit method (FIM).
If we choose m = n but k = n + 1, we obtain a variant of the Implicit
Pressure Explicit Saturation method (IMPES) where the transmissibilities
are computed implicitly. This variant of IMPES has been implemented in
our simulator.

Alternatively, if k = m = n, we obtain a flavor of IMPES with the
transmissibilities in (10,11,13,14) being computed explicitly. Note that
the accumulation terms in the right-hand sides of (9) and (12) are still
computed for the pressure at n+ 1. This flavor of IMPES would be easier
to implement due to the easier computation of the resulting Jacobian;
however, we do implement this simplified algorithm in our simulator.

The above equations manifestly lack source-sink (i.e., well) terms.
These will be added to the right-hand sides in the subsequent sections,
but it is important to note that the well terms are evaluated using oil
pressure at time step n+ 1 and saturation at time step m (i.e., n+ 1 for
FIM and n for IMPES).

9 M Maharramov
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At this point we have all the discretized finite difference equations to
numerically solve the boundary-value problem for the oil-water reservoir
system. The boundary conditions (7) are treated trivially by dropping the
first term in the square brackets in (5,6) when i = 1, and the second term
when i = Nx. Likewise, we drop the third term in square brackets in (5,6)
when j = 1, and the fourth term when j = Nz. Well production/injection
rates (q̃o, q̃w) are evaluated and added to the right-hand side of equations
(9,12) at each time step. Although the proposed discretization is only one
of many viable alternatives, we will now focus on implementation details
for solving these finite-difference equation. However, this scheme is only
first order accurate in time, O(∆t), and one obvious improvement is to use
Crank-Nicholson (CN) scheme for time-differentiation. Although CN is
of higher order it does not add computational effort to the implicit solver
as no new implicit terms are introduced, while allowing larger time steps
due to the higher accuracy. However, we will not pursue this further in
this project.

5 Operator Notation

Before describing the solution techniques employed in our simulator, we
will cast equations (9) and (12) into an operator form that will simplify the
subsequent discussion, provide a few notational shortcuts and help demon-
strate the analogy with the approach taken in our multiphase framework.
First, we introduce our model space as the space of oil pressure and wa-
ter saturation functions discretized on an Nx × Nz spatial grid without
specifying a time grid. Below we denote vectors of the model space via
m:

m = [(Po)1,1(Sw)1,1 . . . (Po)Nx,1(Sw)Nx,1

(Po)1,2(Sw)1,2 . . . (Po)Nx,2(Sw)Nx,2

. . .

(Po)1,Nz (Sw)1,Nz . . . (Po)Nx,Nz (Sw)Nx,Nz ] (15)

Note we order the model by rows (i.e., the index of x is the fastest changing
index). Although m has the natural structure of a matrix, we effectively
consider it as an M = 2×Nx×Nz-component vector. Next, we represent
(9) and (12) as a nonlinear operator equation on the space of model vectors
(15). Although the involved operators are nonlinear, we represent them
as matrices applied on model vectors but will allow the components of
these matrices to depend on the unknown model:

O(mn+1)mn+1 = R(mn), (16)

where mn+1 is the unknown model (at the next time step) and mn is
known. The right-hand side of (16) is some computable vector-function
of known model. In our problem the data space (image of the operator)
has the same dimension as the model space, since the number of equations
equals the number of unknowns and we will seek discretizations that avoid
ill-posedness by ensuring the maximum rank (2×Nx×Nz) of the Jacobian

10 M Maharramov
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of O. For computational purposes we split operator O and equation (16)
as follows:

F(mn+1)mn+1 − g(mn+1) = A(mn+1)
(
mn+1 −mn)+ q(mn+1), (17)

where F,A are M ×M matrices with components dependent on the un-
known model mn+1, g is an M -vector with components also functions of
the unknown model mn+1, and q is an M -vector that represent source
terms as functions of the unknown model. Operator F in (17) represents
the flow terms from (9) and (12) – i.e., the terms that involve the trans-
missibilities but exclude the gravitational terms. Operator A represents
the accumulation terms from the right-hand side of the discretized equa-
tions, with the time increments of the oil pressure and water saturations
appropriately factored out. Vector g represents all the terms from (9)
and (12) that include component gravities. Assuming that the operator
equations (17) are formed by writing out (12) after (9) for each grid point,
moving along the rows, the operator A becomes a block-diagonal matrix
with 2× 2 blocks of the form:

DL
L = DL

L(Pn+1
o ) =

∆x∆y∆z

∆t
× (18)[

(1− Snw)
[
bo(P

n+1
o )cR + φ(Pno )cfo

]
−bo(Pn+1

o )φ(Pn+1
o )

Snw

[
b̃w(Pn+1

o )cR + φ(Pno )cfw
]

b̃w(Pn+1
o )φ(Pn+1

o )− Snwφ(Pno )cfwP
′
c(S

n
w)

]

where L = (j − 1)Nx + i = 1, . . . ,M and all the quantities are computed
at grid point (i, j) and b̃w(Pn+1

o ) = bw(Pc(S
n+1
w ) − Pn+1

o ). Note the
order of equations in our notation is different from [2], and we already
took advantage of the known linear dependence of the inverse formation
volume factors and porosity on pressure. Operator F is block-banded with
5 non-zero block-diagonals10 TL

L,T
L
L±1,T

L
L±Nx

given by

TL
L = TL

L(P lo, S
m
w ) = (19)[

−
∑

(Υx
o)i±.5,j −

∑
(Υz

o)i,j±.5 0
−
∑

(Υx
w)i±.5,j −

∑
(Υz

w)i,j±.5
∑

(Υx
wP
′
c)i±.5,j +

∑
(Υz

wP
′
c)i,j±.5

]

TL
L±1 = TL

L±1(P lo, S
m
w ) = (20)[

(Υx
o)i±.5,j 0

(Υx
w)i±.5,j −(Υx

wP
′
c)i±.5,j

]
and

TL
L±Nx

= TL
L±Nx

(P lo, S
m
w ) = (21)[

(Υz
o)i,j±.5 0

(Υz
w)i,j±.5 −(Υz

wP
′
c)i,j±.5

]
We linearize (17) around mn+1 for Newton iterations. This effectively
means computing the Jacobian of all the terms in (17) that depend on

10we avoid calling such matrices “pentadiagonal” as the latter term is usually associated
with matrices that have bandwidth 5; in our cases F is a sparse matrix with 5 non-zero block
diagonals up to 2Nx positions apart
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mn+1. IN case of single-completion wells, the Jacobian J always has
the block structure of operator F as equations (9) and (12) indicate that
the pressure and saturation at any given block depends on pressure and
saturation only in its neighbors and self. Consequently, neighbors along
the x axis contribute to the 2 × 2 blocks JLL±1, and neighbors along the
z axis contribute to blocks JLL±Nx

of the Jacobian. The accumulation
term only contributes to the diagonal blocks JLL. The gravitational terms
contribute to the off-diagonal blocks JLL±1 of Jacobian, because gravities
at block boundaries are computed as arithmetic means of the gravities
in the adjacent blocks ([2]). Partial derivatives of the transmissibilities
may contribute to the off-diagonal Jacobian blocks if the flow is from the
adjacent blocks – i.e., based on the upwinding condition ([1],[2]).

6 Multiphase Formulation

Our multiphase generalization of the discretized two-phase model (9-14),
is based on the following assumptions:

1. A reservoir state is uniquely determined by a model vector m =
(ξ1, ξ2, . . . , ξN ) (N – the number of phases in the system) defined at
every point of a 3D grid; if the grid has Nx×Ny ×Nz points (block
centers) then the reservoir state is determined by N ×Nx×Ny×Nz
variables;

2. In a discretized11 form, the material balance equation for the phase
number l between the n-th and n+ 1-st time steps is given by

N∑
k=1

∑
B∈NB(J)

Rlkupw(B,J,Fk
BJ

)Υ
geom
BJ Υk

upw(B,J,Fk
BJ

)F
k
BJ =

N∑
k=1

alkJ
ξn+1,k
J − ξn,kJ

∆t
+ qlJ(ξ),

F kBJ = P kB − P kJ − 0.5(γkB + γkJ)(DB −DJ), (22)

where J = (ix, iy, iz) is a 3-index of a reservoir block ranging through
all blocks, B ∈ NB(J) are the 3-indices of the adjacent blocks

(ix ± 1, iy, iz), (ix, iy ± 1, iz), (ix, iy, iz ± 1);

3. In (22) P kI is the pressure of phase k in block I, γkI is the gravity
of phase k in block I, RlkI is the solubility of phase l in phase k
computed in grid block I, Υk

I is the fluid transmissibility of phase
k computed in block I, and Υgeom

BJ is the geometric transmissibility
computed at the interface between blocks J and B, which does not
depend on the state variables;

4. The well term qlJ(ξ) represents a phase-k source/sink in block J , and
for general multi-completion wells has a non-local dependence on the
state variables for all phases at time step n + 1 ξn+1,...

... ; however,
for single-completion wells this term will be shown to depend on
ξn+1,1, . . . , ξn+1,N locally in block J only;

11note that we formulate the multiphase model in a discrete form, rather than obtaining it
from PDE’s by discretization
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5. The upwind indexing function is defined as follows:

upw(B, J, η) =

{
B if η ≥ 0,

J otherwise
(23)

(note that this function’s value is a 3-index – i.e. a 3D vector with
integer components);

6. The accumulation coefficients alkJ depend on the state variables in
block J only;

7. Any functions in (22) that depend on the state variables ξ are eval-
uated at time step n+ 1 (fully implicit formulation);

8. No-flow boundary conditions are imposed along the reservoir bound-
aries; the potential differences F kI in (22) are assigned zero values
when the block index vector I has any component exceeding the
allowed range.

Equations (22) for l = 1, . . . , N and J ranging across all grid blocks
form a system of N ×Nx×Ny×Nz equations for as many state variables
ξn+1,l
J at the next time step. In our simulator, this system is solved at each

time step by Newton iterations (see e.g. [9]) by linearizing the nonlinear
equations around an approximation to the next step model ξn+1, starting
with ξn+1

INIT = ξn as the initial approximation.

7 Jacobian Computation and Packing

Since our objective is to develop a simulator for immiscible oil and water
phases and for notational convenience, we will assume in this section that
the components are not soluble in each other – i.e., Rlk = δlk in (22) and
the first sum in the left-hand side of (22) can be dropped. Note that this
is not a critically important simplification for our multiphase framework
module multiphase.F90, and extending to fully miscible systems with an
arbitrary number of components would require only minor changes to the
multiphase module.

In the Newton method, we iteratively compute approximations to the
next-step model mn+1 ≈mn+1,i, i = 1, 2, . . . by solving linear systems

J(mn+1,i)(mn+1,i+1 −mn+1,i) = R(mn+1,i), (24)

starting with mn+1,0 and stopping when the model update is less than
the prescribed accuracy. The residual vector in the right-hand side of (24)
is computed by substituting ξn+1 = mn+1,i into (22) and pulling all the
terms to the right-hand side. The Jacobian is the Jacobian matrix of the
nonlinear operator obtained by pulling all the terms in (22) to the left-
hand side and computing all the partial derivatives of the all the N×Nx×
Ny ×Nz “coordinate components” of the nonlinear operator with respect
to as many model (state) variables, after substituting ξn+1 = mn+1,i.
This potentially huge matrix J is, however, extremely sparse, with 7×N
non-zero diagonals, not counting the contributions from the well terms.
This number comes from contributions due to flows between each internal

13 M Maharramov
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block and 6 adjacent blocks (in 3D) that have a common boundary with
the given block; since, in the general case of multiphase flows, the fluid
transmissibilities and phase pressures for each phase may depend on all
state variables – as when multi-component capillary pressures depend on
multiple saturations (see e.g. [4]) – contributions from each of the 7 blocks
may result in up to N non-zero Jacobian diagonals. If the state variables
are grouped in a model vector as in (15) component-first packing order
used in Section 5, then the Jacobian effectively becomes a 7-block-diagonal
matrix with N ×N blocks.

If (24) is solved using some exact sparse linear solver that takes advan-
tage of the block-sparsity of J (see e.g. [6]), then the above block structure
proves useful. Note, however, that for realistic grid sizes Nxyz ≈ 1000 the
exact solver approach might be unacceptable as the total cost of solving
(24) once is const×N2 ×Nx ×Ny ×Nz with a (large) constant indepen-
dent of N and the grid sizes (see e.g. [6]). Another, and potentially even
greater, disadvantage of using exact solvers is that efficient exact solvers
require component-wise access to J, thus making their application heavily
dependent on the actual memory packing of the Jacobian.

In our Phase 1 report and version 1 of the simulator, we have used
a banded solver (gbtrf/gbtrs) from the LAPACK library ([3]) applied di-
rectly to solving the 2D Jacobian equations, or in a splitting arrangement
solving a series of 1D problems (see e.g. [2]). The latter approach, al-
though it can effectively assuage the computational complexity of solving
large-scale systems, unfortunately introduces other issues, such as loss of
accuracy (see [1]) and, depending on the splitting mechanism employed,
non-conservative behaviour (see [7]).

In version 2 of the simulator we have completely departed from the
approach based on using exact solvers, and have implemented a Krylov-
subspace iterative solver (see [10],[6]) for solving (24). The advantages
of using an iterative solver can be summed up in the order decreasing of
importance as follows:

1. the initial approximation to mn+1 is always “reasonably close” to
the true solution in the sense that a Krylov solver would take con-
siderably fewer steps12 to converge than when starting from an ar-
bitrary initial approximation (maximum of N ×Nx ×Ny ×Nz, see
[10]); an exact solver would perform the same amount of arithmetic
operations regardless of the initial approximation;

2. our iterative solver (type ls cgnr in cgnr.F90, extends abstract
ls solver in base solver.F90) does not require component-wise
access to J and can use a black-box application of Jacobian operator
(and its adjoint) through the type-bound procedure ls oper%apply()

in base oper.F90;

3. because the Jacobian application is a “black box” operation for the
solver, we have completely encapsulated the multiphase reservoir
model in the abstract type model in multiphase.F90 derived from
the abstract type ls vector in base vector.F90, thus decoupling
the back-end solver from the front-end state-vector implementation;

12here as “steps” we refer to the iterations of the linear solver, not the Newton iterations
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4. the CGNR solver (see [6]) implemented in our solver module cgnr.F90
can be transparently replaced by any other iterative solver imple-
mentation (e.g., GMRES, see [6],[10]) so long as that implementa-
tion is derived from the abstract type ls solver in base solver.F90

and takes abstract ls oper and ls vector class arguments.

The actual computation of the residual is performed in the abstract
type fluids in multiphase.F90 by the type-bound procedure fluids%residual
and in the abstract type jacobian in multiphase.F90 by the type-bound
procedure jacobian%update. Note that the latter is the only Jaconbian
type-bound procedure implemented in multiphase.F90, all the other pro-
cedures are deferred till the actual implementation (in the type twophase jacobian.F90

in twophase.F90. This is critically important for our approach as we effec-
tively delegate the task of computing the Jacobian to the abstract parent
of the two-phase class, thus effectively taking advantage of the concep-
tual simplicity of the multiphase model (22). The type-bound procedure
jacobian%update() accesses abstract type-bound procedures of abstract
types model, geometry, and wells that are dynamically replaced with
the actual two-phase implementations at run time. If we would like to
implement an alternative model – e.g., a black-oil simulator – we would
simply need to supply black-oil implementations for the various compo-
nents in (22) in classes derived from jacobian, fluids and model, without
having to update any other parts of the framework.

Jacobian computation in jacobian%update is performed in a row-by-
row loop13 by pulling non-zero columns into each row (see e.g. [5]). If
upw(B, J, F kBJ) ≥ 0 then the transmissibility derivative (times the cor-
responding potential difference) is contributed to off-diagonal Jacobian
terms with the diagonal determined by multi-index B. When (15) pack-
ing and “natural” subsurface coordinates are used14, the terms are con-
tributed to a diagonal15 Nx × Ny positions above/below the main di-
agonal if B points to lower/upper blocks, Nx positions above/below the
main diagonal if B points to southern/northern grid blocks, and 1 position
above/below the main diagonal if B point to eastern/western blocks. Each
of the flow terms F kBJ contributes partial derivatives to both diagonals as-
sociated with indices B and J as described above, and the accumulation
terms contribute partial derivatives to the main (block) diagonal only.

Once all the non-zero columns for each row of the Jacobian are identi-
fied in jacobian%update, a deferred type-bound procedure jacobian%pd is
invoked to insert the evaluated partial derivative (argument v) at the iden-
tified row (arguments i,ix,iy,iz) and column (arguments j,ixd,iyd,izd).
Note that since jacobian%pd is deferred, the actual updating is handled
by a descendant of the abstract type, and the multiphase framework need
not be aware of the specifics of memory allocation and ordering employed
in the implementation.

Note that the same residual and Jacobian computation procedures
are used both for FIM and IMPES. In the latter case, the Jacobian in-

13“row” here means each state variable index
14z points down, x east, and y south
15actually, a block diagonal; however, here we will drop the reference to “block” to avoid

confusion with grid blocks
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vokes a deferred type-bound function jacobian%explicit(k) that indi-
cates whether the component (phase) number k state variable is computed
explicitly (value 1) or implicitly. If the former, the partial derivatives with
respect to that component for all of the left-hand side terms in (22) are
assumed zero; the partial derivatives with respect to that component of
the accumulation terms alkJ are assumed zero as well. However, the linear
terms ξn+1,k

J − ξn,kJ are differentiated with respect to ξn+1,k
J regardless

of the value returned by jacobian%explicit(k). This is done to effec-
tively allow automatic elimination of the explicit components from (24) in
the linear solver16. The residual computation routine fluids%residual

takes an “IMPES” and “substitution” flags. If the IMPES flag is on, it
computes the residual with the “explicit” components taken from the pre-
vious time step everywhere except in the linear terms ξn+1,k

J −ξn,kJ . If the
substitution flag is set, the linear terms use the updated state variables
for the explicitly computed components, otherwise these terms use the
values from the previous time step as well. The reason for this dual-flag
approach is that we do not segregate the residual for the pressure-only part
of (24) because of the black-box nature of our linear solver. In terms of
our two-phase IMPES implementation, even though at initial and inter-
mediate Newton iterations the water saturation “updates” generated by
solving the IMPES version of (24) are useless and should not be applied
to the saturations from the previous step until the pressure iterations have
converged, we use these intermediate saturation updates to compute the
residual of (24) to check for the convergence of the oil pressure. How-
ever, once the pressure iterations have converged, we apply the saturation
update to the water saturation from the previous time step, as (24) at
the final Newton iteration combines in itself a quasilinearized parabolic
or elliptic pressure equation and a hyperbolic saturation equation.

The following code snippet demonstrates the main time evolution loop
for both FIM and IMPES. The code is an excerpts from p3 tests.F90

driver program that was specifically developed for Phase 3b reference/test
case demonstrations.

! initially m_next = m_interm = m_prev = model (state) at time step t

do

!

! save the saturations from the previous

! time step if using IMPES

if (impes==1) then

prevsat=m_interm.get(2)

end if

!

! Newton-Raphson iterations

inewton=0

do

! update the flow (directions) based on m_interm

call fl.update(m_interm,f,grid)

!

16note that we do not eliminate the saturation explicitly – or triagonalize – the Jacobian
but rely on the linear solver to do this automatically
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! compute the Jacobian...

call jac.update(m_next, m_prev,m_interm,fl,f,grid,w,t,dt,impes)

!

! and the residual; if IMPES, substitute the updated saturations

! in the linear part of the RHS to compute the residual norm

call f.residual(r,m_next,m_prev,m_interm,grid,w,fl,t,dt,impes,1)

!

if (r.linfnorm()/m_prev.linfnorm()< tol .or. inewton==nnewton) then

! call displaymodel(r,’NR convergence residual’)

exit

else

inewton=inewton+1

end if

!

! if IMPES, recompute the residual using the saturations from the

! previous time step

if (impes==1) &

call f.residual(r,m_next,m_prev,m_interm,grid,w,fl,t,dt,impes,0)

!

! initialize the iterative Krylov solver

allocate(solver)

call solver.init(jac, m_interm, r,.false.)

!

! run Krylov solver iterations for ONE STEP of Newton-Raphson

! until the Krylov solver stalls (in ~NSIZE steps)

do

call solver.step()

if (solver.stalled()) exit

! dm=solver.m

end do

!

! get the model update

dm=solver.m

!

deallocate(solver)

!

! update the model iterate

call m_next.lc(m_interm,dm,ONE,ONE)

m_interm=m_next

if (impes==1) then

call m_interm.set(2,prevsat)

end if

!

end do ! Newton iterations

!

!

t=t+dt

if (t>maxtime) exit

end do
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Note that we allow the Krylov solver to run until it stalls – the latter
happens when the Arnoldi/Lanczos iterations have reached an eigenspace
of the linear operator (see [10],[6]). In our context such a situation may
mean

� convergence to the true solution (observed in all of the tests carried
out so far);

� the Jacobian has a very high condition number, effectively resulting
in the numerical rank lower than the true rank.

The latter situation may arise in case of extremely stiff discretizations [1],
and is especially relevant for general multiphase models. The simplest
remedy would be to carry on with the residual computation, and because
the Newton iterations fail to converge, reduce the time step and hence the
stiffness of the system. This approach is implemented in p3 tests.F90.
More generic approaches to improving the convergence of Krylov solvers
for ill-conditioned problems (see [10],[6]) include e.g. reorthogonalization
(implemented in our solver module cgnr.F90) and pre-conditioning. Fur-
ther discussion of this subject goes beyond the scope of this project.

8 Well Model

Our treatment of production/injection wells is based on the following:

� the multiphase framework implemented in our module multiphase.F90
allows for multiple-completion vertical or horizontal wells in the ab-
stract type wells;

� the two-phase implementation in our module twophase.F90 provides
single-completion vertical-only production/injection wells;

� pressures of all the phases inside a well are equal, based on the natu-
ral observation that the oil and water phase pressures at water break
must be equal (because the capillary pressure for zero saturation of
the wetting phase is zero – [4]);

� both the abstract framework and specific implementation allow well
control parameters based on

1. a specified time-dependent production/injection rate for the
well in barrels at stock tank conditions for any one component;
the control component may change with time (e.g., oil produc-
tion followed by water injection);

2. a specified bottom-hole pressure at completion number 1; if this
is specified together with the flow rate, the flow rate overrides
this parameter;

3. maximum and/or minimum bottom-hole pressure at the com-
pletion number one for each well; this constraint can be com-
bined with the flow rate constraint;

� the multiphase framework allows completion perforation anywhere
within a grid block; the two-phase implementation assumes that the
completion is at the center of the block;

18 M Maharramov
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� arbitrary rectangular blocks and anisotropic geometric permeabil-
ity17 are allowed;

� different well skin factors can be provided for different completions
of the same well;

� deviated wells are neither provided for in the abstract type wells,
nor implemented in singlecompletion.

With the above assumptions/constraints in mind, we proceed to the
formulation of the well model.

The steady-state 2D pressure distribution for a radially symmetric flow
of a fluid with a viscosity µ, injection rate qwell from a cylinder of radius
rwell (well completion) in a medium of height ∆z with permeability k,
can be described by the solution to the Laplace equation in the polar
coordinates and is given by

p(r) = pwell +
qwellµ

2πk∆z
ln

r

rwell
, (25)

where pwell in (25) is the fluid pressure at the cylinder wall. Now assuming
that we are given some “average” pressure in a block, po, the “equivalent
radius” ro is the radius at which the analytic solution (25) equals po. Key
to the integration of the analytic solution (25) with numerical schemes is
expressing the equivalent radius via known reservoir geometric parameters,
such as bock dimensions, and reducing (25) for r = ro to

qwell =
2πk∆z

µ

1

ln ro
rwell

(po − pwell). (26)

For a multiphase flow, taking into account phase mobilities and assuming
all phase pressures equal inside the well, we can express (26) as

qwelll = WI× krlbl
µl

(pl − pwell),

WI =
2πk∆z

µ

1

ln ro
rwell

+ s
, (27)

where l is the phase/component index, Pl is the pressure of phase l in the
grid block containing the well completion, WI is referred to as well index
and s is the well skin factor. Note that the skin factor may be regarded
as a normalizing or corrective term and does not arise from the simple
analytic derivation given above. Multiplication of the phase l mobility by
the inverse formation volume factor bl is due to the assumption that all
flow rates are specified at the stock-tank conditions. From (27) we can
relate the flow rates at the completion for different phases:

qwelli =
kribiµl
µikrlbl

qwelll . (28)

Note that (28) holds even before the “break out” of phase i: if the satura-
tion of phase i is zero, then the physically meaningful relative permeability
function kri is zero as well, indicating zero flow rate for phase i component.

17arbitrary diagonal permeability tensor
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In order to incorporate equations (27) and (28) into our simulator,
we only require an expression for the equivalent radius via the grid and
reservoir geometry. We use the following semi-heuristic approximation
due to Peaceaman ([2]):

ro ≈ 0.28

√√
k1∆x2 + −1/2

√
k1∆y2

1/4
√
k1 + −1/4

√
k1

, k1 =
ky
kx
, (29)

where kx, ky are the rock permeabilities along x, y axes, respectively.
We implement (29) in oilwater%q, oilwater%dq type-bound procedures
of the type oilwater in twophase.F90 derived from the abstract type
fluids.

In case of multiple completions, the flow rates in (27) will have to be
summed up to produce the total well flow rate, and the well pressures
at different completions will be related by a hydrostatic gradient and, if
friction effects are incorporated, loss of pressure due to friction. Conse-
quently, unless completions are in the adjacent blocks, the well constraint
equations relate state variables in distant blocks. As a result, the Jacobian
may have additional non-zero diagonals and lose the symmetric 7-diagonal
structure. Multiple-completion source terms are accounted for in the Ja-
cobian computation routine jacobian%update() in multiphase.F90. For
each additional completion, the multiphase module allows adding up to N
extra diagonals to the Jacobian. However, the twophase.F90 implemen-
tation module provides only for a single completion per well, and the well
terms in this implementation contribute only to the diagonal elements of
the Jacobian.

We will now describe the detailed application of well controls at each
time step in the type-bound procedures oilwater%q and oilwater%dq,
and how that affects the residual and Jacobian computation in jacobian%update.

� the deferred type-bound procedure wells%controls() returns the
well controls for each well at a specified time t;

� at each Newton iteration, well rates for each component are com-
puted inside the grid block that contains a well completion;

� the “well control component” phase (i.e. oil for oil producing well,
etc.) for which a flow rate is specified, is added to the right hand side
of (22) and the Jacobian rows corresponding to the control compo-
nent and the containing block are not updated (unless a bottom-hole
condition is violated – see below); the well pressure is computed from
(27);

� if the upper or lower pressure bound is violated, the well pressure is
set to that bound;

� if the bottom-hole pressure was specified or set due to the viola-
tion of pressure bounds, the flow rate for the control component is
(re)computed using (27);

� if flow rate is (re)computed, then the Jacobian is updated with the
partial derivatives of the right-hand side of (27) for all phases and
the containing block;
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� if the flow is not computed from the well pressure, then only the rows
of the Jacobian corresponding to the non-control component and the
containing grid block are updated with the partial derivatives of (28).

9 Phase 3b Analysis

In this section we present phase 3b case studies. In addition to providing
the results of the initial Jacobian and residual computation, we carry out
a stability and convergence analysis of both FIM and IMPES.

9.1 Reference Case With Gravity

Run p3 test.x, specify test 1, specify 0 maximum time, 0.5 initial time
step, 0.5 minimum time step, arbitrary NR tolerance and 1 as maxi-
mum Newton-Raphson iterations, select FIM as the solution method (0).
The resulting Jacobian will be output in an executable Matlab script file
case1.m. The most significant elements of the Jacobian are -7126661 and
7480782, and agree well with the provided reference case (-7128100 and
7482500) accounting for the lower accuracy of the provided Matlab re-
sult and the ordering scheme used in our simulator. Other elements are
< 1.e+ 6 and are provided at too low accuracy for exact comparison but
are the right order of magnitude with respect to our results. The Residual
produced by our code and the one provided for this exercise do not match.

The next subsection validates our residual and Jacobian computation
without regard to the provided reference values.

9.2 Reference Case With Gravity – run to con-
vergence

Run p3 test.x, specify test 1, specify 365 as the maximum time, 1 initial
time step, 1 minimum time step, 0.0001 NR tolerance and 10 as maximum
Newton-Raphson iterations, select FIM as the solution method (0).

The resulting oil pressures are

4099.970 4099.970 4099.970

4264.617 4264.617 4264.617

4430.108 4430.108 4430.108

and water saturations

0.094 0.094 0.094

0.100 0.100 0.100

0.106 0.106 0.106

Our driver program outputs the pressure difference between the centers
of blocks (1,1) and (1,2), and (1,2) and (1,3):

hydrostatic pressure due to 550ft of emulsion: 164.646628861526 165.491316421459

The above figures agree with the hydrostatic pressure differential due
to 550 ft column of 90% oil and 10% water emulsion:

550× (40× 0.9 + 62× 0.1)/144 ≈ 160psi.
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Note that the initial pressure difference was ≈ 60 psi hence our so-
lution is converging to a physically meaningful configuration. Also note
how the water saturation is decreasing in the top layer and increasing at
the bottom, while conserving the total amount of water.

Running the same test with a smaller time step produces the same
result.

10 years run time:

SPECIFY CASE TO RUN (1,2,3):1

MAX TIME (=0 FOR PH3B):3650

INITIAL (and maximum) TIME STEP:1

MINIMUM TIME STEP:1

NR tolerance:0.001

MAX NEWTON-RAPHSON ITERATIONS (=1 FOR PH3B):10

IMPES/FIM (=1/0):0

................................................

Final model oil comp:4106.669 4106.669 4106.669 4268.952 4268.952 4268.952

4433.534 4433.534 4433.534

20130313 040953.438:

Final model water comp:0.060 0.060 0.060 0.084 0.084 0.084

0.156 0.156 0.156

20130313 040953.439:

hydrostatic pressure due to 550ft of emulsion: 162.283232351721 164.58

1745602047

– and again, a very good agreement with the underlying physical model,
with water continuously migrating to lower levels. Note, however, that
due to capillary effects the downward migration of water, while continuing,
slows down.

Stability test with a very large time step (10 years):

SPECIFY CASE TO RUN (1,2,3):1

MAX TIME (=0 FOR PH3B):3650

INITIAL (and maximum) TIME STEP:3650

MINIMUM TIME STEP:3650

NR tolerance:0.001

MAX NEWTON-RAPHSON ITERATIONS (=1 FOR PH3B):1000

IMPES/FIM (=1/0):0

................................................

Final model oil comp:4096.816 4096.816 4096.816 4258.516 4258.516 4258.516

4422.223 4422.223 4422.223

20130313 041324.892:

Final model water comp:0.052 0.052 0.052 0.070 0.070 0.070

0.178 0.178 0.178

20130313 041324.893:

hydrostatic pressure due to 550ft of emulsion: 161.700350796471 163.70

6514736158

The result for the large time step cannot be expected to be accurate,
but it demonstrates the stability of our FIM solver. The pressures are still
very accurate due to the diffusive effect’s of the large time step agreeing
with the underlying physical process.

100 years run time:
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SPECIFY CASE TO RUN (1,2,3):1

MAX TIME (=0 FOR PH3B):36500

INITIAL (and maximum) TIME STEP:1

MINIMUM TIME STEP:1

NR tolerance:0.001

MAX NEWTON-RAPHSON ITERATIONS (=1 FOR PH3B):100

IMPES/FIM (=1/0):0

................................................

Final residual oil comp:-1.705 -1.705 -1.705 -2.735 -2.735 -2.73

5 4.439 4.439 4.439

20130313 041957.258:

Final residual water comp:1.622 1.622 1.622 2.600 2.600 2.6

00 -4.221 -4.221 -4.221

20130313 041957.259: ==========================================================

20130313 041957.259:

Final model oil comp:4117.095 4117.095 4117.095 4277.838 4277.838 4277.838

4439.243 4439.243 4439.243

20130313 041957.259:

Final model water comp:0.016 0.016 0.016 0.025 0.025 0.025

0.259 0.259 0.259

1000 years run time:

SPECIFY CASE TO RUN (1,2,3):1

MAX TIME (=0 FOR PH3B):3650000

INITIAL (and maximum) TIME STEP:10

MINIMUM TIME STEP:0.1

NR tolerance:0.001

MAX NEWTON-RAPHSON ITERATIONS (=1 FOR PH3B):100

IMPES/FIM (=1/0):0

................................................

Final residual oil comp:-1.705 -1.705 -1.705 -2.734 -2.734 -2.73

4 4.439 4.439 4.439

20130313 042828.210:

Final residual water comp:1.622 1.622 1.622 2.599 2.599 2.5

99 -4.221 -4.221 -4.221

20130313 042828.210: ==========================================================

20130313 042828.210:

Final model oil comp:4117.238 4117.238 4117.238 4277.981 4277.981 4277.981

4439.386 4439.386 4439.386

20130313 042828.210:

Final model water comp:0.016 0.016 0.016 0.025 0.025 0.025

0.259 0.259 0.259

20130313 042828.210:

hydrostatic pressure due to 550ft of emulsion: 160.742747986578 161.40

5162435065

– we can clearly see water “locked” in the upper layers at some low satu-
ration levels due to capillary effects.

IMPES test:

SPECIFY CASE TO RUN (1,2,3):1
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MAX TIME (=0 FOR PH3B):365

INITIAL (and maximum) TIME STEP:1

MINIMUM TIME STEP:0.1

NR tolerance:0.001

MAX NEWTON-RAPHSON ITERATIONS (=1 FOR PH3B):10

IMPES/FIM (=1/0):1

................................................

Final residual oil comp:0.002 0.002 0.002 0.000 0.000 0.000

-0.002 -0.002 -0.002

20130313 043206.331:

Final residual water comp:0.000 0.000 0.000 0.000 0.000 0.0

00 0.000 0.000 0.000

20130313 043206.331: ==========================================================

20130313 043206.331:

Final model oil comp:4099.674 4099.674 4099.674 4264.831 4264.831 4264.831

4430.289 4430.289 4430.289

20130313 043206.331:

Final model water comp:0.093 0.093 0.093 0.100 0.100 0.100

0.106 0.106 0.106

20130313 043206.331:

hydrostatic pressure due to 550ft of emulsion: 165.157246548627 165.45

7342620851

– a very good agreement with our FIM result for the same maximum run
time.

9.3 Reference Case Without Gravity

Run p3 test.x, specify test 2, specify 0 maximum time, 0.5 initial time
step, 0.5 minimum time step, arbitrary NR tolerance and 1 as maxi-
mum Newton-Raphson iterations, select FIM as the solution method (0).
The resulting Jacobian will be output in an executable Matlab script file
case2.m. The most significant elements of the computed and reference
Jacobians again agree. The Residual produced by our code and the one
provided for this exercise do not match.

The next subsection validates our residual and Jacobian computation
without regard to the provided reference values.

9.4 Reference Case – run to convergence

Run p3 test.x, specify test 2, specify 365 as the maximum time, 1 initial
time step, 1 minimum time step, 0.0001 NR tolerance and 10 as maximum
Newton-Raphson iterations, select FIM as the solution method (0).

SPECIFY CASE TO RUN (1,2,3):2

MAX TIME (=0 FOR PH3B):365

INITIAL (and maximum) TIME STEP:1

MINIMUM TIME STEP:1

NR tolerance:0.0001

MAX NEWTON-RAPHSON ITERATIONS (=1 FOR PH3B):10

IMPES/FIM (=1/0):0
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................................................

Final residual oil comp:-0.366 -0.366 -0.366 0.000 0.000 0.00

0 0.367 0.367 0.367

20130313 043928.064:

Final residual water comp:-0.022 -0.022 -0.022 0.000 0.000 0.

000 0.022 0.022 0.022

20130313 043928.064: ==========================================================

20130313 043928.064:

Final model oil comp:4264.245 4264.245 4264.245 4264.271 4264.271 4264.271

4264.296 4264.296 4264.296

20130313 043928.064:

Final model water comp:0.100 0.100 0.100 0.100 0.100 0.100

0.100 0.100 0.100

20130313 043928.064:

hydrostatic pressure due to 550ft of emulsion: 2.534296584508411E-002 2.53540

4676564212E-002

– the pressures have equalized throughout the reservoir and the satura-
tions obviously stay constant as expected, in keeping with the physical
model (no gravity)

Exactly the same result is produced by IMPES solver (IMPES=1). As in
case 1, arbitrarily large time steps can be specified, affecting the accuracy
of the saturation but not the pressure because of the diffusive nature of
pressure equalization.

9.5 Test Case With Gravity

Run p3 test.x, specify test 3, specify 0 maximum time, 0.5 initial time
step, 0.5 minimum time step, arbitrary NR tolerance and 1 as maxi-
mum Newton-Raphson iterations, select FIM as the solution method (0).
The resulting Jacobian will be output in an executable Matlab script file
case3.m.

The most significant elements of the computed Jacobian are -7143790,
-7146966, 7917944, 7933202. The Residual produced by our code is

our_initial_residual( 1 )= -1388.60632578487 ;

our_initial_residual( 7 )= 2165.13420245475 ;

our_initial_residual( 13 )= -724.836643997927 ;

our_initial_residual( 3 )= -1388.60632578487 ;

our_initial_residual( 9 )= 2165.13420245475 ;

our_initial_residual( 15 )= -724.836643997927 ;

our_initial_residual( 5 )= -1388.60632578487 ;

our_initial_residual( 11 )= 2165.13420245475 ;

our_initial_residual( 17 )= -724.836643997927 ;

our_initial_residual( 2 )= 2390.49149921636 ;

our_initial_residual( 8 )= -2281.92547044827 ;

our_initial_residual( 14 )= -161.854776378351 ;

our_initial_residual( 4 )= 2390.49149921636 ;

our_initial_residual( 10 )= -2281.92547044827 ;

our_initial_residual( 16 )= -161.854776378351 ;

our_initial_residual( 6 )= 2390.49149921636 ;
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our_initial_residual( 12 )= -2281.92547044827 ;

our_initial_residual( 18 )= -161.854776378351

The next subsection validates our residual and Jacobian computation.

9.6 Test Case – run to convergence

Run p3 test.x, specify test 3, specify 365 as the maximum time, 1 initial
time step, 1 minimum time step, 0.0001 NR tolerance and 10 as maximum
Newton-Raphson iterations, select FIM as the solution method (0).

SPECIFY CASE TO RUN (1,2,3):3

MAX TIME (=0 FOR PH3B):365

INITIAL (and maximum) TIME STEP:1

MINIMUM TIME STEP:1

NR tolerance:0.0001

MAX NEWTON-RAPHSON ITERATIONS (=1 FOR PH3B):10

IMPES/FIM (=1/0):0

................................................

Final residual oil comp:0.041 0.041 0.041 -0.018 -0.018 -0.018

-0.021 -0.021 -0.021

20130313 045147.926:

Final residual water comp:-0.003 -0.003 -0.003 0.003 0.003 0.

003 0.000 0.000 0.000

20130313 045147.926: ==========================================================

20130313 045147.926:

Final model oil comp:8846.649 8846.649 8846.649 9056.575 9056.575 9056.575

9235.240 9235.240 9235.240

20130313 045147.926:

Final model water comp:0.445 0.445 0.445 0.146 0.146 0.146

0.109 0.109 0.109

20130313 045147.926:

hydrostatic pressure due to 550ft of emulsion: 209.926583869808 178.66

4443329662

The pressure differences between layers are in a reasonably good agree-
ment with the hydrostatic gradient in a stabilized pressure profile:

550× (40× 0.6 + 62× 0.4)/144 ≈ 188psi,

550× (40× 0.6 + 62× 0.4)/144 ≈ 170psi,

10 years run time:

MAX TIME (=0 FOR PH3B):3650

INITIAL (and maximum) TIME STEP:1

MINIMUM TIME STEP:1

NR tolerance:0.0001

MAX NEWTON-RAPHSON ITERATIONS (=1 FOR PH3B):10

IMPES/FIM (=1/0):0

................................................

Final residual oil comp:0.008 0.008 0.008 0.004 0.004 0.004

-0.012 -0.012 -0.012
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20130313 045818.136:

Final residual water comp:-0.001 -0.001 -0.001 0.000 0.000 0.

000 0.000 0.000 0.000

20130313 045818.136: ==========================================================

20130313 045818.136:

Final model oil comp:8894.178 8894.178 8894.178 9079.336 9079.336 9079.336

9273.294 9273.294 9273.294

20130313 045818.136:

Final model water comp:0.181 0.181 0.181 0.227 0.227 0.227

0.292 0.292 0.292

20130313 045818.136:

hydrostatic pressure due to 550ft of emulsion: 185.157261127511 193.95

8269384751

– while the saturation is sufficiently high, water is continuously migrating
to lower layers.

100 years run time:

SPECIFY CASE TO RUN (1,2,3):36500

20130313 050112.530: invalid case number - quitting

maharram@glad:src$ ./p3_tests.x

SPECIFY CASE TO RUN (1,2,3):3

MAX TIME (=0 FOR PH3B):36500

INITIAL (and maximum) TIME STEP:1

MINIMUM TIME STEP:1

NR tolerance:0.0001

MAX NEWTON-RAPHSON ITERATIONS (=1 FOR PH3B):100

IMPES/FIM (=1/0):0

................................................

Final residual oil comp:0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000

20130313 050227.599:

Final residual water comp:0.000 0.000 0.000 0.000 0.000 0.0

00 0.000 0.000 0.000

20130313 050227.599: ==========================================================

20130313 050227.599:

Final model oil comp:8947.536 8947.536 8947.536 9117.883 9117.883 9117.883

9290.895 9290.895 9290.895

20130313 050227.599:

Final model water comp:0.017 0.017 0.017 0.029 0.029 0.029

0.653 0.653 0.653

20130313 050227.600:

hydrostatic pressure due to 550ft of emulsion: 170.346868058248 173.01

1999770137

– and again, water shows signs of slower migration at similar levels of
saturation as in case 1. The downward migration will continue but at
exponentially slower rates.

100000 years run time:

SPECIFY CASE TO RUN (1,2,3):365000

20130313 050539.117: invalid case number - quitting
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maharram@glad:src$ ./p3_tests.x

SPECIFY CASE TO RUN (1,2,3):3

MAX TIME (=0 FOR PH3B):365000

INITIAL (and maximum) TIME STEP:1

MINIMUM TIME STEP:1

NR tolerance:0.0001

MAX NEWTON-RAPHSON ITERATIONS (=1 FOR PH3B):100

IMPES/FIM (=1/0):0

................................................

Final residual oil comp:-0.344 -0.344 -0.344 -0.585 -0.585 -0.58

5 0.929 0.929 0.929

20130313 051037.772:

Final residual water comp:0.310 0.310 0.310 0.526 0.526 0.5

26 -0.835 -0.835 -0.835

20130313 051037.772: ==========================================================

20130313 051037.773:

Final model oil comp:8950.513 8950.513 8950.513 9120.776 9120.776 9120.776

9291.855 9291.855 9291.855

20130313 051037.773:

Final model water comp:0.007 0.007 0.007 0.012 0.012 0.012

0.681 0.681 0.681

20130313 051037.773:

hydrostatic pressure due to 550ft of emulsion: 170.263439009399 171.07

9093006061

– almost all of the water is in the bottom layer, with the water content of
oil in the top layer below 1%.

1000 years time-step stability test:

SPECIFY CASE TO RUN (1,2,3):3

MAX TIME (=0 FOR PH3B):365000

INITIAL (and maximum) TIME STEP:365000

MINIMUM TIME STEP:365000

NR tolerance:0.0001

MAX NEWTON-RAPHSON ITERATIONS (=1 FOR PH3B):100

IMPES/FIM (=1/0):0

................................................

Final residual oil comp:-0.003 -0.003 -0.003 -0.047 -0.047 -0.04

7 0.048 0.048 0.048

20130313 052314.515:

Final residual water comp:0.232 0.232 0.232 -0.049 -0.049 -0.0

49 -0.184 -0.184 -0.184

20130313 052314.515: ==========================================================

20130313 052314.515:

Final model oil comp:8872.134 8872.134 8872.134 9042.230 9042.230 9042.230

9212.922 9212.922 9212.922

20130313 052314.515:

Final model water comp:0.009 0.009 0.009 0.010 0.010 0.010

0.681 0.681 0.681

20130313 052314.516:

hydrostatic pressure due to 550ft of emulsion: 170.096602443478 170.69
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1988758776

– as before, the diffusive effect of the extremely large time step that agreed
with the underlying physical process suppressed the errors that could be
expected from such a coarse discretization.

IMPES test:

SPECIFY CASE TO RUN (1,2,3):3

MAX TIME (=0 FOR PH3B):365

INITIAL (and maximum) TIME STEP:1

MINIMUM TIME STEP:1

NR tolerance:0.0001

MAX NEWTON-RAPHSON ITERATIONS (=1 FOR PH3B):10

IMPES/FIM (=1/0):1

................................................

Final residual oil comp:0.129 0.129 0.129 -0.115 -0.115 -0.115

-0.012 -0.012 -0.012

20130313 052130.044:

Final residual water comp:-0.005 -0.005 -0.005 0.005 0.005 0.

005 0.001 0.001 0.001

20130313 052130.044: ==========================================================

20130313 052130.044:

Final model oil comp:8846.866 8846.866 8846.866 9058.892 9058.892 9058.892

9233.364 9233.364 9233.364

20130313 052130.044:

Final model water comp:0.441 0.441 0.441 0.154 0.154 0.154

0.106 0.106 0.106

20130313 052130.044:

hydrostatic pressure due to 550ft of emulsion: 212.026636591881 174.47

1542935215

– the results are comparable to FIM with the same run time, step and
accuracy parameters.

10 Phase 4 Test Case 4A

The results of FIM simulation for this test case are shown on Fig 1,2, and
the corresponding IMPES results are shown on Fig 3,4. A good qualitative
and quantitative agreement can be seen with the results of ECLIPSE
simulation on Fig 5,6. The bottom-hole pressure curves produced by
the two simulators match for the production well but slightly differ for
the injector – see Fig 7. As we will see in later tests, this difference is
probably specific to this homogeneous test.

The test case input files for OOMP RS are tests/4AFIM/4A and tests/4AIMPES/4A;
similar naming rules apply to all the tests. Any tests described in this
document can be run by executing the run.sh Bourne shell script within
the corresponding test directory.

11 Phase 4 Test Case 4B

We have performed three types of analysis for this test case:
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Figure 1: Oil pressure after 5-year FIM simulation – test 4AFIM.
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Figure 2: Water saturation after 5-year FIM simulation – test 4AFIM.
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Figure 3: Oil pressure after 5-year IMPES simulation – test 4AIMPES.
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Figure 4: Water saturation after 5-year IMPES simulation – test 4AIMPES.
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Figure 5: Oil pressure after 5-year ECLIPSE simulation – test 4A.

Figure 6: Water saturation after 5-year ECLIPSE simulation – test 4A.
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Figure 7: Well BHP after 5-year simulation – test 4AFIM vs ECLIPSE.
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� sensitivity to well locations;

� sensitivity to change of (oil) mobility;

� the effect of spatial grid refinement.

Fig 8,9 demonstrated the result of FIM simulation (with 1 day maxi-
mum time step) for test case 4B. The corresponding ECLISPE results are
shown on Fig 10,11. Note that the bottom-hole pressure curves predicted
by the two simulators show good agreement throughout the simulation
history (see Fig12), with the OOMP RS showing a more realistic behaviour
near zero time, apparently due to the small initial time step used in our
simulation (.1 day).
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Figure 8: Oil pressure after 5-year FIM simulation – test 4BFIM.

The results of IMPES modeling shown on Fig 15,15 are in good qualita-
tive18 agreement with the results of the FIM modeling, and the predicted

18and quantitative for oil pressure
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Figure 9: Water saturation after 5-year FIM simulation – test 4BFIM.
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Figure 10: Oil pressure after 5-year ECLIPSE simulation - test 4B.

Figure 11: Water saturation after 5-year ECLIPSE simulation – test 4B.
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Figure 12: Well BHP – test 4BFIM vs ECLIPSE.
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Figure 13: Oil pressure after 10-year FIM simulation – test 4BFIM.
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Figure 14: Water saturation after 10-year FIM simulation – test 4BFIM.
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BHP curves match (see Fig17). Note how the saturation front modeled
by IMPES is sharper than in the FIM case, which is in agreement with
the saturation “decoupled” from the pressure propagating according to a
first-order hyperbolic PDE (see [1]). The saturation front takes advantage
of the horizontal permeability channel – this effect can be demonstrated
using FIM only for higher-resolution grids, as will be shown later in the
document.
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Figure 15: Oil pressure after 5-year IMPES simulation – test 4BIMPES.

Note the qualitative agreement between the long-term (10 year) FIM
and IMPES modeling by our simulator, shown on Fig 13,14,18,19.

11.1 Well Relocation

In the well location sensitivity analysis, we move the injector upward by
440 ft, and pull the producer down 330 �ft.The resulting oil pressure and
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Figure 16: Water saturation after 5-year IMPES simulation – test 4BIMPES.
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Figure 17: Well BHP – test 4BFIM vs 4BIMPES.
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Figure 18: Oil pressure after 10-year IMPES simulation – test 4BIMPESLONG.
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Figure 19: Water saturation after 10-year IMPES simulation – test 4BIMPES-
LONG.
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water saturation profiles at the end of the 5-year simulation by OOMP RS are
shown on Fig 20,21. Fig 22 indicates a slight increase in the production
rate, and Fig 23,24 indicate an increase of the cumulative production in
5 years by ≈ 27, 000 bbl.
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Figure 20: Oil pressure after 5-year FIM simulation – changed well locations –
test 4BFIMMOVED.

11.2 Sensitivity to Mobility

In the sensitivity to mobility analysis, we increase the oil viscosity by fac-
tor of 2, thus decreasing its mobility by half. The resulting oil pressure and
water saturation profiles are shown on Fig25,26. The predicted bottom-
hole pressure drop at the producer (see Fig 27) is in agreement with the
reduced oil mobility, and the corresponding production drop (≈ 10, 000
bbl) is demonstrated on Fig 28,29.
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Figure 21: Water saturation after 5-year FIM simulation – changed well loca-
tions – test 4BFIMMOVED.
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Figure 22: Well BHP – changed well locations – test 4BFIM vs 4BFIMMOVED.
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Figure 23: Production rates – changed well locations – test 4BFIM vs 4BFIM-
MOVED.
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Figure 24: Production increase due to changed well locations – test 4BFIM vs
4BFIMMOVED.
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Figure 25: Oil pressure after 5-year FIM simulation – reduced oil mobility –
test 4BFIMMOBILITY.
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Figure 26: Water saturation after 5-year FIM simulation – reduced oil mobility
– test 4BFIMMOBILITY.
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Figure 27: Well BHP – reduced oil mobility – test 4BFIM vs 4BFIMMOBILITY.
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Figure 28: Production rates – reduced oil mobility – test 4BFIM vs 4BFIMMO-
BILITY.
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Figure 29: Production drop due to reduced oil mobility – test 4BFIM vs 4BFIM-
MOBILITY.
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11.3 Grid Refinement Study

In this study we increase the spatial resolution by a factor of two (Fig 3031)19

and factor of 4(Fig 3334) 20. Note that for vertical cross sections doubling
the spatial resolution is not sufficient for increasing the accuracy because
of the semi-analytical well index term (27) that depends linearly on the
vertical grid step21. The reason for that is the (almost) linear increase
of the well index would result in a horizontal shift of the BHP curve in-
consistent with the physical model. Top avoid this phenomenon and in
order to be able to compare the modeled reservoirs at varying resolution,
we manually specify the well index in the high-resolution tests, using the
well index values computed in the base low-resolution test.

Note a very good agreement between the bottom hole pressures for
two different resolutions (see Fig32).

The highest resolution (120×60) test on Fig 33,34 is a good illustration
of the “high permeability channel” that manifested itself earlier by a sharp
horizontal contrast in water saturation, in the IMPES test of Fig19. The
contour plot of Fig 35 shows a detailed structures of saturation fronts
caused by the complex rock permeability patterns.

12 Time Step Control

OOMP RS uses two principal time-step and iteration control methods.

1. for the FIM, the time step is controlled using a user-specified desired
change in oil pressure and water saturation ([2]):

∆tn+1 =
(1 + ω)δpd

δp+ ωδpd
∆tn, (30)

where δpd is the desired change in variables p and δp is the actual
change over the previous step. We combine (30) with a dynamic step
control that cuts the time step by half if the Newton method fails
to converge within a specified number of iterations;

2. for the IMPES, we use the CFL for an approximation to the satura-
tion front propagation equation and compute the maximum allowed
time step as

∆t = 0.5×min
Vijkφijk

(qo + qw)f ′w
, (31)

where fw is the ratio of the water mobility to the total mobility of oil
and water, and the coefficient 0.5 in (31) we have found heuristically
to account for the approximate nature of the corresponding nonlinear
first-order hyperbolic PDE ([1]). OOMP RS combines (31) with an
automated fall-back mechanism in case the saturation takes non-
physical values (i.e. above one or below zero).

19increasing the total number of grid blocks by 4
20increasing the number of grid blocks by 16
21For horizontal cross-sections, increasing the spatial resolution while still using the well

index formula (27) is still possible
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Figure 30: Oil pressure after 5-year FIM simulation – 2x resolution spatial grid
– test 4BFIMHIRES.
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Figure 31: Water saturation after 5-year FIM simulation – 2x resolution spatial
grid – test 4BFIMHIRES.
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Figure 32: Well BHP – 2x resolution spatial grid – test 4BFIM vs 4BFIMHIRES.
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Figure 33: Oil pressure after 5-year FIM simulation – 4x resolution spatial grid
– test 4BFIMHIRES2.
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Figure 34: Water saturation after 5-year FIM simulation – 4x resolution spatial
grid – test 4BFIMHIRES.
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Figure 35: Water saturation after 5-year FIM simulation – 4x resolution spatial
grid – test 4BFIMHIRES.
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It is important to note that the automatic step control used in our
simulator does not use any accuracy criteria beyond the maximum time
step specified by the user.

Figure36,37 illustrate the time-step strategy used by three favours of
the FIM and IMPES. The most accurate FIM uses a constant time step
of 1 day and steadily decreasing number of Newton iterations. The fastest
FIM (12 s run time including file logging) on an 8-core intel64 system)
increases the time step to up to 50 days, while using more iterations.
The second FIM demonstrates a trade-off between the time steps and
iterations.
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Figure 36: Comparison of time steps used by three FIM strategies and automatic
stability control IMPES.
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Figure 37: Comparison Newton iteration count used by three FIM strategies
and automatic stability control IMPES.
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13 Appendix A: Building the Code

The simulator code resides in the src subfolder of the report folder. The
Bourne shell script compile.sh can be used to compile and build the
simulator on an intel64 (emt64) platform running Linux (kernel 2.6.18
or later) and Intel Fortran Compiler version 12.0 or later, and Intel

Math Kernel Library version 10.2 or later.

If Intel development environment has been set up for your account,
then you should be able to build the simulator simply by running the
above script. If the code builds but fails to run due to a missing dynamic
library, check your $LD_LIBRARY_PATH variable and make sure that paths
to the Intel run-time libraries are included in the variable22.

All of the tests described in this document reside in the tests subfolder
of the report root. Change the current directory to any one of those
directories and run the corresponding tests by invoking the run.sh script.
The program output will appear in text files within the same folder and
(partially) on the console screen. SmallMatlab scripts are provided inside
the test folders for generating the intermediate and final modeling plots.

The parent directory tests/ contains a Matlab script that generates
the bottom-hole pressure, production and time-stepping plots.

14 Appendix B: Data File Format

The following is the sample data input file used by version 2.0 of OOMP RS.
The variable names are self-explanatory and/or agree with the definitions
of the Phase 4 task formulation.

!

! PHASE 4B parameters

!

&dimensions lx=3300,ly=110,lz=1650,topdepth=6000. /

&permeabiulity fnpermx=’rockperm4b.inc’, fnpermy=’rockperm4b.inc’, fnpermz=’rockperm4b.inc’ /

&porosity fnpor=’porosity.inc’, fncompr=’rockcompr.inc’, pref_por=14.7 /

&tops toppressure=4200. /

&gridsize nx=30, ny=1, nz=15 /

&name casename=’4B’ /

&oildensity rho0_o=40., b0_o=1., cf_o=1.2e-5, pref_rho_o=14.7 /

&waterdensity rho0_w=62.238, b0_w=1., cf_w=5.e-7, pref_rho_w=14.7 /

&watermu mu0_w=1., cmu_w=0., pref_mu_w=14.7 /

22or specified in ld.conf
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&oilmu mu0_o=5., cmu_o=2.e-6, pref_mu_o=14.7 /

&capillary pc_c=0., pc_exp=2. /

&fluidpermeability kro_exp=1.5, krw_exp=1.5 /

&injector iw_ix=5, iw_iy=1, iw_iz=7, iw_qw=-1400, iw_maxbhp=7500, iw_radius=0.5 /

&producer pw_ix=25, pw_iy=1, pw_iz=7, pw_qo=2200, pw_minbhp=1800, pw_radius=0.5 /

&control tol=0.0001, minstep=.1, maxstep=1, initstep=1, maxtime=1825, maxnewton=50 /

&stepcontrol omega=.5, target_p=200., target_s=.1 /

&output dout=182, welldout=1, interm=1, stepout=1 /

&method impes=0 /
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