[2013-04-30]


[2013-04-30]

On Static Earthquake Triggering

This work uses the elastostatic Green's tensor for an arbitrary layered Earth model with free-surface boundary conditions to study the impact of elastic heterogeneity as well as source-fault slip and geometry on the stress transfer mechanism. Slip distribution and fault geometry of the source have a significant impact on the stress transfer, especially in case of spatially extended triggered events. Maximization of the Coulomb stress transfer function for known aftershocks provides a mechanism for inverting for the source event slip. Heterogeneity of the elastic earth parameters is shown to have a sizeable, but lower-magnitude, impact on the static stress transfer in 3D. The analysis is applied to Landers/Hector Mine and 100 small "aftershocks" of the Landers event. A computational toolkit is provided for the study of static stress transfer for arbitrary source and receiver faults in layered Earth.


http://arxiv.org/abs/1304.7821