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(57) ABSTRACT

In one embodiment, a method includes accessing an initial
image of a load on a moving load carrier, the initial image
of the load having been captured at an initial time, and
accessing a subsequent image of the load at a subsequent
time. The method further includes generating a transformed
set of images including a first initial image and a first
subsequent image, by transforming at least one of: (1) the
initial image to the first initial image or (2) the subsequent
image to the first subsequent image according to a motion
profile of the load carrier from the initial time to the
subsequent time. The method further includes estimating a
motion of the load carrier from the initial time to the
subsequent time based on minimizing a difference between
the first subsequent image of the load and the first initial
image of the load.

accessing an initial image of a load on a
moving load carrier, the initial image of the
load having been captured at an initial time
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accessing a subsequent image of the load on
the moving load carrier, the subsequent image
having been captured at a subsequent time

120

generating a transformed set of images
comprising a first initial image and a first
subsequent image, wherein creating the
transformed set of images comprises
transforming at least one of the initial image
to the first initial image or the subsequent
image to the first subsequent image
according to a motion profile of the load
carrier from the initial time to the
subsequent time
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estimating a motion of the load carrier from
the initial time to the subsequent time based
on minimizing a difference between the first
subsequent image of the load and the first
initial image of the load
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accessing an initial image of aloadon a
moving load carrier, the initial image of the
load having been captured at an initial time

110

accessing a subsequent image of the load on
the moving load carrier, the subsequent image
having been captured at a subsequent time
120

generating a transformed set of images\
comprising a first initial image and a first
subsequent image, wherein creating the
transformed set of images comprises
transforming at least one of the initial image
to the first initial image or the subsequent
image to the first subsequent image
according to a motion profile of the load
carrier from the initial time to the

subsequent time
\ 130 /

/estimating a motion of the load carrier from\
the initial time to the subsequent time based
on minimizing a difference between the first

subsequent image of the load and the first
initial image of the load
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ESTIMATING MOTION OF A LOAD
CARRIER

TECHNICAL FIELD

[0001] This application generally relates to estimating
motion of a load carrier.

BACKGROUND

[0002] Moving load carriers are used in a wide variety of
applications, including commercial, residential, and indus-
trial applications. For example, a turntable or similar rotat-
ing load carrier is commonly found in microwave ovens.
While the microwave oven is emitting microwave radiation,
the turntable rotates, thereby rotating any load (e.g., a food
item on a dish such as a plate) that is on the turntable. In this
example, rotation of the load is used to reduce position-
dependent discrepancies in the microwave radiation reach-
ing the load.

[0003] As another example of a moving load carrier, some
commercial food-processing applications involve perform-
ing quality control on loads by detecting thermal conditions
(e.g., temperature) of the load as it moves along, or is pushed
off of, a conveyor belt. Additional examples of the uses of
moving load carriers include processes in industrial chemi-
cal equipment, nuclear equipment, and transportation,
among many other applications.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 illustrates an example method for estimating
the movement of a load carrier.

[0005] FIG. 2 illustrates an example graph of the objective
function (16) at a single time in the example of cooking a
food item on a microwave turntable.

[0006] FIG. 3 illustrates an example statistics of an esti-
mated rotation rate of a rotating load carrier.

[0007] FIG. 4 illustrates a specific implementation of the
example method of FIG. 1.

[0008] FIG. 5 illustrates an example computing system.

DESCRIPTION OF EXAMPLE EMBODIMENTS

[0009] Moving load carriers are used in a wide variety of
applications, including commercial, residential, and indus-
trial applications. For example, rotating load carriers are
commonly found in microwave ovens, conveyor belts, rotis-
serie spindles, and other mechanical systems. However, the
amount of movement of a moving load carrier often cannot
be predicted a priori. For example, a carrier designed to
rotate at 3 rotations per minute may in fact rotate at a
different rate, both at any point in time or on average over
a given time period. For instance, a manufacturer’s speci-
fications for a motor may state that the motor rotates at a
constant rate, but in practice the motor’s rotation rate may
deviate from the stated rotation rate by a constant bias,
which may be specific to each particular motor unit (e.g.,
two motors of the same model and manufactured in the same
plant in the same batch may nevertheless have a different
bias). In addition, a load-carrier’s rotation rate may vary
temporally, including due to random noise, due to load-
specific attributes (e.g., a heavy load may slow the rate of
rotation), and/or due to varying conditions (e.g., a temporary
stick-slip condition that is present due to a specific interac-
tion between a load and a carrier). A carrier’s rotation rate
may exhibit oscillations, drift, or stuttering motion that

Jun. 5, 2025

varies as a function of load and/or as a function of time.
Moreover, variable friction and electrical fluctuations may
result in a rotation rate that is different than the designed
value. Additionally, the rotation rate of a load carrier may
change over time due to system design, assembly, mainte-
nance, operating conditions, and/or the properties and physi-
cal placement of each load.

[0010] Uncertain movement creates a variety of problems
when attempting to estimate a load’s parameters. One
example of the kind of problems uncertain rotation can
create comes from load segmentation, for example of a food
load in a microwave oven. A microwave that changes its
control parameters (e.g., radiation intensity) based on the
temperature of the food must be able to distinguish between
regions of the microwave that contain food and the back-
ground (such as a plate the food rests on, the interior of the
microwave, etc.). For example, suppose an RGB or thermal
image of the interior of the microwave includes food por-
tions and non-food portions in the image. An initial seg-
mentation map between food and non-food regions can be
made by processing image data from an initial image, but
this segmentation map will be inaccurate for subsequent
images as the food rotates on the carrier.

[0011] As one example of a masking approach to segmen-
tation, it is possible to calculate an initial segmentation (e.g.,
food and non-food) mask for frozen food being defrosted in
a microwave by measuring which pixels in the initial
thermal image are associated with a temperature below 0° C.
and which are associated with a temperature above 0° C.
Frozen food has a temperature below 0° C. in the initial
thermal image before any heat is applied, but after some
defrosting time it is likely that some of the frozen food will
have thawed to temperatures above 0° C. After heating,
temperatures inside the load become highly uneven, making
the threshold-based masking like that described above (e.g.,
threshold=0° C.) difficult or impossible. After heating, recal-
culating the mask according to the threshold criteria would
then exclude the thawed regions, and a process designed to
thaw the food gently may over-heat those portions of the
load because it does not recognize them as food.

[0012] Continuing the example above, an initial mask of
the food can be made, for example based on the threshold
described above. If the food is on a turntable and the cameras
are static, however, the resulting mask will become inaccu-
rate as soon as the turntable begins rotating. Correct inter-
pretation of the data from the RGB and/or thermal cameras
therefore requires that the mask be updated for each subse-
quent image. One approach to updating the mask could be
to recalculate the mask based on the RGB and/or thermal
images each time a new image is captured (i.e. dynamic
masking). However, dynamic masking is often impractical
(e.g., due to computational requirements) and ineffective
(e.g., due to changing load and/or background conditions
that make masking over time difficult). In addition, in the
example above, dynamic masking will not work once the
food begins to thaw.

[0013] Another approach to updating the mask in the
example above is to transform (e.g., rotate) the initial image
of the mask (or the subsequent image of the food, or both).
However, as explained above, the rotation rate of a load
carrier is typically not known apriori. This disclosure there-
fore describes techniques and systems for accurately esti-
mating the movement of a load carrier. This estimate can
then be used to estimate any number of load statistics, such
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as the temperature distribution of a load exclusive of the
background. As discussed throughout, the embodiments of
this disclosure accurately estimate motion of a load carrier,
often in real time. As described herein, in particular embodi-
ments other load statistics are estimated from the movement
estimates described herein.

[0014] As described herein, techniques and systems of this
disclosure can be applied to a wide variety of moving load
carriers and preclude the need for more expensive and more
accurate carriers (e.g., precisely designed motors) in order to
estimate a carrier’s motion. The techniques described herein
may be used by any suitable device including an appliance
such as a microwave oven, rotisserie, or other consumer
cooking appliance, and including transportation or process-
ing equipment (such as turntables, linear conveyor systems,
or other systems that transport material along a trajectory).
A load generally refers to the object or material that is being
processed or transported within the apparatus (such as the
food being heated while rotating on a microwave turntable,
or manufactured goods carried on conveyor systems).
[0015] As used herein, motion of a load carrier includes,
for example, rotational or periodic motion of a load carrier.
For example, a rotational load carrier itself may rotate, or the
motion of a rotational load carrier may follow a periodic
path (e.g., a conveyor belt following a loop path, or a load
carrier that oscillates), and rotational motion can include
elliptical (e.g., including circular) or non-elliptical periodic
motion. In particular embodiments, rotational motion can be
represented by a function 6(t), where 0 describes the peri-
odic aspects (for example, but not limited to, circular
motion) of the load carrier’s motion and t represents time.
Motion of a load carrier also includes, in particular embodi-
ments, motion of at least a portion of the load carrier along
one or more predetermined trajectories. For example, a load
carrier may carry an object along a predetermined path. In
particular embodiments, sequential runs of one or more load
carriers over a particular predetermined path may be param-
eterized by an angle between 0 radians (the start of the
predetermined path) and 2#*pi (the end of the predetermined
path), and N completed runs along a particular predeter-
mined path may be treated as N rotations from O to 2¥pi.
However, particular embodiments may not use any such
parameterization to describe carrier motion.

[0016] Particular embodiments of this disclosure estimate
in real time the state and/or position of load-carrying com-
ponents (the “carrier state”) based on observations of the
load. Particular embodiments formulate the problem of
estimating the time-varying position (or time-varying state,
more generally) of a load carrier (such as a microwave
turntable, conveyor belt, rotisserie spindle, etc.) as a prob-
lem of parameter estimation from observations. As
explained herein, the observations may be a set of measure-
ments that include thermal or optical images, among other
things.

[0017] A carrier state of a system apparatus may be
defined by a pair of vectors:

wang) 0=(0,i=1, .., ng) (69)

where T represents the input parameters and 0 represents the
state variables. For example, for a microwave turntable both
T and O are scalars, (n.=ng=1), T represents time, and 6=0(t)
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is the rotation angle of the turntable at time T. In other
examples, 6=0(t) may represent translation motion, e.g.,
along a predetermined path (in other words, 8 represents the
state variables generally, and is not limited to references to
angles). Although the input parameter may be a scalar time
in many applications, the approach still holds if t and 6 are
arbitrary-length vectors. Associated with each value of the
input parameter (e.g., time) is a vector of measurable attri-
butes (the “data”):

d=d(r)=d, ) = (d'(, (), i=1, ... ,N) @)

that represent observable features of the load, carrier, an
other components of the apparatus. In general, the input
parameter T may encode more than a temporal marker, and
the data samples (2) are indexed sequentially. For each
known value of the input parameter t the data vector (2)
depends on an unknown value of the state variable 8=0(x)
for that input parameter. Such dependence may be referred
to as an observation model. For example, d may consist of
visual images and/or thermometric measurements:

d =d(x, §()) = U(7, x, y, 6, T(@, %, p, H(D)), &)

where I(1,x,y,0(1))=I(x,y.0(t)) is an image of the load and
carrier obtained (e.g., using an RGB camera) when the
carrier state (e.g., turntable rotation angle) is 0 at time T, and
T(r, x,y,0(7)) is a temperature map (e.g., obtained using an
infrared camera), and (x.,y)e D, or (x,y)e D, where D,, D,
are the fields of view of the RGB and infrared cameras,
respectively. While certain examples herein use observable
data that are two-dimensional optical or thermal images, this
disclosure contemplates that observable data may have
different dimensions or be of a different type. The objective
is to calculate a statistic of the load or apparatus given by an
expression:

§ =8, 8(n)) = Flz, 6(1), d(7, 6())] “

for any values of the input parameter T for which observa-
tions (2) are available. In the example of a microwave
turntable example, S(T,6(T)) might represent the mean tem-
perature of food at time T and turntable angle 6(t).

[0018] Since 6 is presumed to be unknown or uncertain,
the evaluation of (4) involves explicit or implicit estimation
of 6(t) from N, observations of the measurable data (2).
Given known values of the input parameter T, and the
corresponding data observations d,, embodiments estimate
the conditional probabilities of the state variable for each
sample,

O~p@| di, 72, ®)
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as well as the maximum a posteriori (MAP) estimate and/or
the conditional expectation of the state variable:

6 = argmax[p(@ | d, 1], ©

8, = E pgla,.op [6]- @

Once (5-7) are known, embodiments estimate the probabil-
ity distribution, MAP estimate, and/or the expected value of
(4):

Si0) = Flrs, 0, di]~p(S = Fl1;, 0, di] | di, 1) = p(8 | di, 11), ®
S; = Flr;, 6;, d], ®
S, = E e e [F 171, 6, 1. (10)

In the discussion above, i=1, . .., N_ and “x~p( )"
indicates that a variable x is drawn from the probability
distribution p( ). The posterior probability (5) can be esti-
mated using Bayes’ rule:

pd; |6, :)p@, 7:) an

0| di, 1) = ~ pldi |6, 7)) p(0, 1),
p0| ) 1) pld: |6, T)p(@, )

where the denominator is a normalizing factor, and p(6, t,))
is a prior probability of the state variable for t=t,. The
probability p(B, t,) describes a “state prior”, “state model”,
or “state evolution model” while p(d,|0, t,) provides an
“observation model”.

[0019] FIG.1 illustrates an example method for estimating
the motion of a load carrier that utilizes the approach
described in equation 5. In the example method of FIG. 1 the
measurable data are images (e.g., RGB images, thermal
images, etc.), although this disclosure contemplates that any
suitable measurable may be used to estimate the motion of
the load carrier.

[0020] Step 110 of the example method of FIG. 1 includes
accessing an initial image of a load on a moving load carrier,
the initial image of the load having been captured at an
initial time. For example, the initial image may be an RGB
image or a thermal image (or a combination of such images)
of a food item on a microwave turntable taken at an initial
time, e.g., before heating of the food item has occurred or
when heating has first started. Step 120 of the example
method of FIG. 1 includes accessing a subsequent image of
the load on the moving load carrier, the subsequent image
having been captured at a subsequent time. For example, the
subsequent image may be of the same type (e.g., RGB image
or thermal image) as the initial image and is captured at a
later time.

[0021] Step 130 of the example method of FIG. 1 includes
generating a transformed image set that includes a first
initial image and a first subsequent image. Step 130 is
performed by transforming at least one of (1) the initial
image to the first initial image or (2) the subsequent image
to the first subsequent image according to a motion profile
of the load carrier from the initial time to the subsequent
time. For example, the motion profile of the load carrier may
be defined by a rotation of the load captured in the initial
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image and the subsequent image (e.g., the load may rotate as
a result of rotation of the load carrier, such as rotation of a
turntable in a microwave). In this example, for instance, the
transformation may be a rotation of either or both of the
initial image and the subsequent, image, e.g., as discussed in
connection with equation 14, below. As another example, the
motion profile of the load carrier may be defined by a
translation of the load captured in the initial image and the
subsequent image (e.g., the load may translate as a result of
rotation of the load carrier, such translation of a load along
a conveyor belt). Either or both of the initial image and the
subsequent image may be transformed in step 130; e.g., the
first initial image may be the initial image accessed in step
110 and the first subsequent image may be obtained by
transforming the subsequent image accessed in step 120, or
the first initial image may be obtained by transforming the
initial image accessed in step 110 and the first subsequent
image may be the subsequent image accessed in step 120, or
the first initial image may be obtained by transforming the
initial image accessed in step 110 and the first subsequent
image may be obtained by transforming the subsequent
image accessed in step 120 (e.g., a relative rotation of 90
degrees may be represented by rotation of one image by 90
degrees, the other image by —90 degrees, or each image by
45 and —45 degrees, respectively; similar analysis applies to
relative translations).

[0022] Step 140 of the example method of FIG. 1 includes
estimating a motion of the load carrier from the initial time
to the subsequent time based on minimizing a difference
between the first subsequent image of the load and the first
initial image of the load. The estimated movement may be
expressed in any suitable units (e.g., degrees, radians, num-
ber of rotations, feet, etc.). In step 140, estimating the
motion of the load may be achieved by estimating the
motion of the load relative to a fixed point (e.g., rotation
relative to the microwave housing) or may be achieved by
estimating the relative motion of the load to the imaging
apparatus that captured the initial and subsequent images.
Steps 130 and 140 may together include transformation
(e.g., rotating) either or both of the initial image and the
subsequent image to minimize the difference between those
images.

[0023] In particular embodiments, step 140 of the example
method of FIG. 1 includes solving the MAP estimation
problem (equations 6 and 11) with a prior p(8, T,) based on
some assumption of how the state variable 8 depends on T
and based on the application-specific conditional probability
of the observed data given 6 and T,, that is: p(d;l0, T,).
Starting with image-based measurement data in (3), if the
dependence of an RGB or thermal image on 0 is given by a
function I(x,y.0), and the image obtained at time T=t, is
[(x,y), then assuming an uncorrelated Gaussian measure-
ment noise with variance ,” results in:

M (x, y, ) = Ltx, I3 12
;| 6, 70 = pUl; |6, 7)) ~ exp| - ——————=—2|

2
207

and (6) becomes the nonlinear optimization problem:

. TG p, ) = Lt I3 13
g = argmin| ———————

o 207

—log p(8, Ti):la



US 2025/0185126 Al

where log p(0, T,) is a state-variable likelihood prior that, for
example, penalizes unexpected values of 0,. In particular
embodiment, step 140 of the example method of FIG. 1
estimates motion, such as rotation, using equation 13, i.e.,
based on both (1) the difference between the first subsequent
image of the load and the first initial image of the load and
(2) a likelihood distribution of the motion of the load carrier
at the subsequent time. In particular embodiments, step 140
of the example method of FIG. 1 estimates motion of a load
carrier based only on the difference between the subsequent
image of the load and a transformation (e.g., rotation)
applied to the initial image of the load, which can simplify
the resulting estimate.

[0024] In an example in which the load carrier is a
microwave turntable, then a subsequent image after some
rotation can be represented by the following transformation:

Ix, y, ) = Rgll(x, y, W] + &1 + &2, 14)

where 0 is a rotation angle of the turntable, Ry is the planar
(image) rotation operator, and €,, €, represent random and
non-random noise. Sensor noise may be an example of
random noise, while specular reflections (e.g., bright spots
that consistently appear across image) are examples of
non-random noise. While the example of equation 14 rep-
resents an image transformation of I(x,y,0) as a rotation of
the image, this disclosure contemplates that the motion of a
carrier may be represented, for any particular image of the
carrier, as other transformations of the image (e.g., by a
translation of an image of a load moving along a conveyor
belt carrier, or by a combination of a rotation and a trans-
lation of an image, etc.).

[0025] In particular embodiments, a likelihood prior may
be a constant mean rate of rotation:

0= ~ 0 — 7)) (s

>

logp(8, ;) = const —
94 i 20_5171

where m; and o are the instantaneous and mean rotation rate,
respectively, and 691_7]2 is the angle variance estimated at the
previous time step. For example, the initial constant mean
rate of rotation may be a specified rotation rate, e.g., as
provided by the manufacturer. As described below, other
likelihood priors may be used to estimate the rotation of a
load carrier. While the example of FIG. 15 describes motion
of a rotating load carrier in the context of rotation, similar
formmulations of the likelihood prior may be used for trans-
lations, with suitable change of variables from angular
coordinates to, e.g., Cartesian coordinates (e.g., instanta-
neous and mean rotation rate become instantaneous and
mean velocity, etc.).

[0026] With prior (15), equation (13) becomes:

(16)
6 =

1M, DRI, 3, O =K IE - @ =6y —0@ =7
argmin| +

2 2
20F 205, ,
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where M is an arbitrary image-processing operator (for
example, but without limitation, a masking operator). Solv-
ing equation (16) and the subsequent estimation of the state
variable variance 6,” is an example of a Bayesian filter. By
linearizing Rol(x,y,0)-L(x.y) at the prior expectation 6=
E, ox) [6]., equation (16) becomes equivalent to an
Extended Kalman Filter (EKF). FIG. 2 illustrates an
example graph of the objective function (16) at a single time
in the example of cooking a food item on a microwave
turntable. The best estimate for the amount of rotation is the
angle that minimizes the difference, or misfit, between
images while taking into account the prior; in the example
of FIG. 2, this best estimate is the lowest point on the
graphed curve. For the highly nonlinear objective function
(16), even a small error in the prior angle expectation E ,q .,
[6] due to the oscillatory true instantaneous rotation rate o,
may result in the solution to (16) converging to a wrong
local minimum (e.g., to a local minimum that is not the
global minimum). Approximation of (16) with a quadratic
objective function as in EKF (e.g., quadratic 210 in the
example of FIG. 2) may likewise result in a wrong minimum
if the prior angle expectation E o, [68] is sufficiently
inaccurate.

[0027] In particular embodiments, equation (16) may be
solved using numerical methods of nonlinear optimization
such as (for example) nonlinear Conjugate Gradients, New-
ton, quasi-Newton, and Gauss-Newton methods. Such meth-
ods may require multiple iterations to converge. For
example, particular embodiments may use numerically com-
puted first and second derivatives of the objective function
with respect to the state variable 0 in a full Newton imple-
mentation.

[0028] In practice, the instantaneous rotation rate of a load
carrier is not constant but rather varies, potentially for many
different reasons (e.g., noise, bias, load-dependent charac-
teristics, etc.). Moreover, as illustrated in FIG. 2, an objec-
tive function used to estimate 6; may have more than one
local minimum. If the probability prior (15) yields an
expected value of 0 that is too far from the global minimum,
a quadratic optimization step may yield the wrong estimate
for 0. Particular embodiments address these challenges by
adopting improved estimates of the likelihood prior for a
given load carrier.

[0029] In particular embodiments, suboptimal priors
(which may be equivalent to poor initial approximations or
inaccurate linearization points for the objective function
(16)) can be remedied by reducing the average sampling rate
E[t—r,,]. For example, rapid updates in the estimate for
the turntable angle prevent large errors from accumulating,
even if the rotation rate is not truly constant. For instance, a
sampling rate of below 1 second or 0.5 second may allow a
solution to (16) by a Newton solver to converge within
acceptable time and avoid wrong local minima. However,
such rapid re-calculation of the turntable angle requires a
large amount of computing resources, which improved esti-
mates of the likelihood prior can avoid.

[0030] As an example of using improved priors to inform
the initial estimate of the state variable 0, particular embodi-
ments treat the set of all permissible carrier states (e.g., the
states defining the rotational dynamics of the load carrier) as
a stochastic process that in the most general case is defined
by a joint probability density function for arbitrary multiple
states (an instance of a “state evolution model”):
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(0,5 05y .- L an

>01K;711>Tiza )

where the joint probability distribution (17) can be, for
example, a multivariate Gaussian distribution, with the state
variables forming a Gaussian Random Field. Equation 17
may also be representing as p(8,.0,. . ... 0, T, T,. . .

7») which is parameterized by a vector of unknown latent
parameters A. For example, as explained below in the
context of a microwave turntable, the vector A includes
parameters in generating functions of =, t,, and r,, which
represent, respectively, a quasi-period rotational term, a
non-random and non-periodic trend in the rotation rate, and
random noise in the rotation rate as in equation (22) below.
[0031] Using time as the input parameter T can consider
causal processes, with the state prior now defined by a
conditional probability of a state given earlier states. More
specifically,

pld; | 0; 7)p(0, 01, ..., 015 71) - (18)
pld;i, )

pld;i |0, )p®: = 6 0i1, ...,

p@|di, 01, ..., O1510) =

015 1) p(Oi-1, .-- 5 015 T1),

which assumes that current observations depend only the
current carrier state, p(d;10, 0,_,, . . ., 0;; T)=p(d,;|0; T,). In
essence, Equation (18) extends the conditional probability
analysis to a series of prior observations of the carrier angle,
potentially informed by a physical model of the carrier
rotation.

[0032] Using the state evolution model and assuming that
the acceleration is white noise, Equation (13) becomes

I(x, y, ) — Lix, Y3 (19)
6 = argmin| L0 2O KON o _gig, i)
207
with
0 =61 — w1 — 14_1)*
logp(f; = 0|01, ..., 1) = const — %
2003, | +oai = 1)’
R 20
w; = I + 6wy, bw; ~ N(O; U'g), @
Ti-1 —Ti-2
where 6,7 is the estimated variance of random accelerations.

The distribution (20) describes a non-stationary Brownian
motion. Zero angular acceleration corresponds to constant
rotation rate. Equation (20) is an updated version of equation
(15) that includes an example of an improved state-variable
likelihood prior.

[0033] Using the improved likelihood prior, particular
embodiments determine the statistics of the carrier motion as
the process evolves by calculating the conditional probabil-

ity:

p(0j=0|0j71,..4,01;‘r,v) 21

for arbitrary values of j. After sufficient data is obtained, then
equation (21) can be numerically evaluated, and equation
(19) can be solved for subsequent states. This is equivalent
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to applying a Bayesian Filter. Returning to the microwave
turntable example, graph 305 of FIG. 3 plots an example
deviation 1M, in the rotation rate (compared to constant
rotation) as parameterized according to:

O — O 22
77k=—k kl_w:ﬂk+rk+rk>k:2>--*ajvsampa @)
Tp = Tg-1

where 6, are solutions of (16) and @ is the average rotational
velocity. Graphs 310, 315, and 320 display the components
of a decomposition of the series into a seasonal (quasi-
periodic) signal 7., a non-random and non-periodic trend t,,
and the residuals r,, respectively.

[0034] In the example of FIG. 3, the autocorrelation
function for r, (illustrated in graph 325) has only one
significant lag, indicating that r, is a moving average process
of lag 1, MA(1):

Vk=Ek+a’16k,1,k=2,..A,ANsamP,EkNN(O;U'g) (23)

and process €, is white. More generally, r, may indicate an
autoregressive (AR) or autoregressive moving average
(ARMA) process:

P g
e = Zj:l Birer+ ijl @i o e

k=max(p, @) + 1, ..., Noamp» & ~ N(0; 07)

where €, is white and the stochastic process is ARMA(p,q).
The seasonal component and trend are typically determin-
istic signals and may be represented as a linear combination
of a constant bias b, linear function b;T and signals that
make up a “basis” or “dictionary”,

d i 25
ﬂk+tk=b0+b1‘rk+zj:17ij], 25)

where {X/}. j=1, . . ., d is such a dictionary of signals. For
example, in the example of FIG. 3, decomposition (22)
features a weak quasi-periodic component and a weak trend.
The seasonal component =, visualized in FIG. 3 reveals
periods of increasing and decreasing rotational velocity that
could be indicative of a “stick-slip” behavior of the carrier
surface or caused by an uncompensated shift of the camera
from the physical center of rotation. Piecewise polynomial
or trigonometric functions of time are examples of signal
“dictionaries.” Particular embodiments fit the representa-
tions (24) and (25) to series (22) (i.e., determine values of
the coefficients o, . B, . DoV ) by converting
equation (22) into, for example, a least-squares regression
problem:

. ' 26)
1, g B1,..ps bo1s 71, 4> @ = argmin

_ 2
W, of O = O

Ee, e samp o —O—Tp =t — 1 .
1 Nsamp =max(p.p+l K\ 1) — T4y
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where the expectation is with respect to the Gaussian white
process €,. Once the coefficients have been determined, the
conditional probability (21) can be explicitly calculated as:

logp®; = 06215 1) = (27)

O-0; 1 —{@w+m;+1t; +r}a; —T]',l))z

const — 2 2 2
2[0'9],71 +(1;—15m1) a',j]

where I, T, t; are forecast according to (24) and (25), csrk2 is
the variance of (24) (independent of k for a stationary
process), and variances of the estimated carrier state 69_7]2
are obtained from the solution of (19). Equations (22)
through (26) provide one example of a parameterized sto-
chastic process for the carrier motion, with the end result
being that Eq. (27) is used for the estimate of 8,* in Eq. (19).
In this example, unknown parameters within the stochastic
model are estimated in tandem with the estimation of 0,*.
The result is an estimate of the carrier motion that does not
require the rapid updates described above, can be calculated
in real time or near real time, and is robust to noise or
numerical error. As described above, the state estimation and
state uncertainty estimation in this example uses a combi-
nation of real-time observations and the postulated stochas-
tic process of state evolution.

[0035] Equation (24) illustrates a discrete ARMA process
for performing state variable estimation with some exog-
enous variables X,/ in (25), and the observations are camera
images. This disclosure contemplates other approaches,
including a range of scenarios such as when state evolution
is a numerical discretization of a continuous physical law or
a stochastic differential equation; state evolution is a con-
tinuous auto-regressive moving-average process; state evo-
Iution is governed by a Gaussian process with known or
inaccurate input parameters; the observation model is a
Gaussian process; the observation model is non-Gaussian; or
one or both of state evolution and observation models is
described by a probabilistic graphical network, such as a
neural network.

[0036] While the transformation discussed above in con-
nection with equation (14) uses rotation as an example, the
general transformation operator Rg[ ] referenced in equation
(14) above and elsewhere generally applies to any kind of
carrier motion described herein. For example, let I[(x,y,0) be
the initial image and I(x,y,0) the transformed (e.g., rotated)
image. For convenience we introduce vector notation {=(x,
y), {'=(x,y"), and define the action of a motion operator Rg[
] on the initial image as:

106, 9, 6) = 1, ) = Ryl (-, ONQ) = ', 0) = I, ¥/, 0), where (M=1)
=4,

and Ag: R>>R? is a parameterized planar map (not neces-
sarily linear). For example,

(M-2)

, [cos —sinf],
4gl =[ ]

sind cosf
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may describe carrier rotation, and

(M-3)

Ao 0,0 = [00501 —sind; ] - [ﬁ(ﬁz)]

sinf, cosé; f2(62)

may describe rotation parameterized by a state variable 0,,
and coordinate translation described by two arbitrary appli-
cation-specific functions (e.g., conveyor trajectory coordi-
nates) that may be given analytically or algorithmically and
parameterized by a state variable 0,. Note that 0, may itself
be a “multi-parameter”—e.g., a vector parameter. Temporal
evolution of the state variables in equations (M-2) and (M-3)
can be given in a closed functional form or algorithmically:

0; = 6:(t, p), (M_4)

where t is time and p stands for (a vector of) system
parameters, such as rotation velocity v in 0,=vt or linear
velocity scaler ¢ and offset ¢ in 0,=ct+b, but can be any
parameters required for evaluating equations (M-1 through
M-4) for arbitrary time t as part of likelihood maximization
in equations (13,16,19).

[0037] Although this discussion formulates state variable
estimation using matching of two-dimensional images in
(13) and elsewhere, the motion may occur in three dimen-
sions. For example:

10,3, 0) = 1, 0) = L', 0) = K, ¥/, 7, 0), where (M-5)

=y, ), 0= 48",

L(x.y'.,z,0) is a 3D “image” of the load at the initial time,
and the operator Ay R*>—R? is given by, for example:

cos¢ O sing cosf —sing 0O
Ag{”:[(l) (1) g]l 0 1 0 H[sin@ cosd o]gu
—sing 0 cos¢ 0 0 1
LW
[
S

[0038] In (M-6), all or some of the state variables 0, 8, Y
may be functions of time as in (M-4) above, or constant
hyper parameters. The transformation (M-6) may describe a
turntable rotation around the third axis (the innermost 3x3
matrix) followed by an optional translation (e.g., turntable
rising and lowering), followed by tilting from the third axis
by an angle ¢ (e.g., to simulate an observation camera
mounted off center), and finally projection onto the camera
image plane. Note that a non-zero tilt ¢ may mean temporary
occlusion of some portions of the 3D “image” I;(x'y".z',0)
(e.g., sides of elevated loads may not be fully visible at all
rotation angles).

[0039] While this disclosure provides specific examples of
transforms, the techniques described herein apply to any
ansatz transforms A, parameterized by “state variables” that
allow numerical likelihood evaluation and maximization as
in equations (13,16,19) and elsewhere in this disclosure.

(M-6)
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[0040] This disclosure contemplates that all or some por-
tions of images may be used as the measurable data. For
example, a portion of an image (e.g., a segmentation mask)
identifying a load separately from the background may be
identified from an image. The transformation (e.g., rotation
and/or translation) of the segmentation mask is then subse-
quently calculated. In a rotational example, defining the
mask as L(x,y,0(t)) and the initial mask as L(x,y,0) results
in:

Lix, y, 0) = Rg[L(x, y, 0)], @8

where Ry is a computed rotational transform by angle 6. The
updated (transformed) segmentation mask can then be used
to determine other metrics. For example, in the microwave
context, one goal may be to estimate the 5% and 95
percentiles of the food temperature, where the food (i.e., the
load in this example) is identified by the mask. The desired
statistics (4) are then:

S@) = (29)

Percentilesy, os0,{z: z = I(x, x, y, 0(), (x, ») € Dy, L(x, y, ) =1},

Other statics of the load, including thermal statics, may
likewise be determined based on the updated segmentation
mask, including but not limited to a temperature distribution
of the load, a mean temperature of the load, a median
temperature of the load, etc. As this example illustrates,
instead of using dynamic masking, accurate segmentation
can be obtained using a less computationally demanding
approach by calculating a static load mask once, then
transforming the mask to its current position at a given time
by accurately estimating the transformation (rotation and/or
translation) it underwent up to that time due to motion by the
rotating load carrier. Particular embodiments may use the
estimated carrier state to correct measurements (such as
thermal images) for carrier motion that has occurred since
the initial state; calculate the desired statistics after applying
a static load mask to the motion-compensated measure-
ments; or to use the estimated carrier state to update in real
time a dynamic load mask.

[0041] FIG. 4 illustrates a specific example implementa-
tion of the example method of FIG. 1 in the context of a
rotating load carrier. The implementation of FIG. 4 includes
many additional features described herein, although those
features may not be present in any particular embodiment of
FIG. 1. The implementation of FIG. 4 describes a particular
process that can occur for each distinct episode in which
statistics of a load carrier are estimated (e.g., each time a
microwave is used to heat a food item, etc.). More broadly,
the example method of FIG. 1 and/or the example imple-
mentation of FIG. 4 may be performed each time a user
places food in a microwave and heats the food. In particular
embodiments, either or both processes may occur under
particular operational settings (e.g., when heating is set to
occur for longer than a threshold time, when a particular
heating function (e.g., defrosting) is selected, etc.). While
the discussion related to FIG. 4 uses rotational motion as an
example, the steps of FIG. 4 may be used to estimate any
kind of carrier motion, as described herein.

Jun. 5, 2025

[0042] Step 1 of the example implementation shown in
FIG. 4 includes obtaining global parameters, if any, relevant
for estimating the rotation rate of a carrier or subsequent
statistics. As illustrated in the examples above, an estimated
rotation rate may be a constant rotation rate or may be a
rotation rate that varies as a function of time (e.g., the
estimated rotation rate may be an estimate of the rotation
rate at a particular point in time or an estimate of a variable
rotation rate over time). For example, global parameters may
be a measurement of the fraction of the carrier covered by
aload. Step 2 of the example implementation shown in FIG.
4 includes operating the system to obtain an initial sampling
of data. This initial sampling may be a single data point at
an initial time (e.g., d,; at a time T,) or may be an initial set
of data samples. For instance, in the example of a microwave
oven, the initial sampling may be an initial image or images
(e.g., RGB, thermal, etc.) of the interior of the microwave.
The amount of data may depend on the implementation and
desired model accuracy; for example, a few frames of data
(e.g., captured at 30 frames per second or 60 frames per
second, etc.) may be sufficient to complete step 2. In
particular embodiments, 10-20 seconds of data may be used
to complete step 2. Step 3 of the example implementation
shown in FIG. 3 involves creating an initial state prior to use
to initially estimate the rotation rate. For example, the initial
state prior may be a constant rotation rate, e.g., as provided
by a manufacturer. In particular embodiments, the initial
state prior may be statistics determined in a previous run of
FIG. 4 for that apparatus, e.g., an average rotation rate
determined for that apparatus during a previous usage of that
apparatus. As the system operates, the system continues to
collect data samples at particular points in time.

[0043] Step 4 of the example implementation shown in
FIG. 4 includes estimating state variables from the collected
data. For example, as described above, the system may
estimate an amount of rotation (along with other statistics, in
particular embodiments) at a given point in time based on
minimizing a difference between an image taken at that point
in time and an initial image taken at a previous time, with at
least one of the images transformed as described above. In
particular embodiments, the state variables may also take
into account the initial state prior, e.g., as shown in equation
13. Meanwhile, the system continues to periodically collect
data samples.

[0044] At step 5, the system determines whether sufficient
data has been collected to define the state evolution. “Suf-
ficient data” has been collected when the system has enough
data points to estimate the parameters of a specific prob-
ability distribution (21). For example, the system has enough
data points to estimate a probability distribution such as (27)
when it can solve the corresponding parameter estimation
regression problem (26). If enough data has not been col-
lected, then the system continues to collect data and con-
tinues to use step 4 to estimate state variables. If enough data
has been collected, then the implementation proceeds to step
7, which begins an improved estimation process for the state
variables. As illustrated in the example implementation of
FIG. 4, a system may initially estimate state variables using
initial data and inputs (e.g., an initial state prior), and may
subsequently switch to an improved process for estimating
state variables when enough data has been collected to make
that estimation.

[0045] Step 7 of the example implementation of FIG. 4
includes fitting a stochastic process model to the estimated
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state variables. In particular embodiments, step 7 may
include fitting the latent parameters A* to estimated states
6,* by solving the following equation:

A= argmax[p(@’{, 03, s H;Vsamp; T1 T2 o s TNy 3 )L)] (30)

Once the stochastic process model is fitted to the estimated
state variable, for example by obtaining an estimate of the
latent vector A*, then step 8 includes setting up a new state
prior for the system, for example by setting up the condi-
tional probability:

p(0j=0|0];1, s 015755 A7), (€29]

which is generated from the latent vector A* and the joint
probability distribution, and in this example is parameter-
ized by the latent vector. In particular embodiments steps 7
and 8 may be performed only once per run of the apparatus
(e.g., once per heating episode, in the microwave example),
so that computational delay will not interrupt the subsequent
real-time operation. In particular embodiments, steps 7 and
8 may be repeated, for example if the error between mea-
surements and forecast states grows too large. For example,
as illustrated in FIG. 4, if the difference between forecast
states and measurements after step 11 (discussed below)
becomes too large (e.g., the difference is greater than the
sensor noise associated with the sensor capturing the
images), then steps 7 and 8 may repeat.

[0046] Step 9 of the example implementation shown in
FIG. 4 includes forecasting the next carrier state 6;*, where
* represents an estimated quantity. for new inputs T; given a
set of previous states, using the conditional probability
shown in equation 21 or 31. In particular embodiments, the
initial estimation 6,* made in step 4 may be sufficiently
accurate for a particular use case, and therefore steps 5-8 in
FIG. 4 are replaced by a direct connection from step 4 to step
9.

[0047] Meanwhile, in the example implementation shown
in FIG. 4 the system continues to collect more data samples
(dj,‘tj), as shown in step 12 of the flowchart, and these data
samples are used to in step 9 to forecast the next carrier state.
For example, in step 9 the estimated value of 6,* may be
estimated as the maximum a priori (MAP) solution that
maximizes the probability of the data and the forecast:

0} = argmax[p(dj |6, Tj)p(ﬁj =0 | 0;,1, 0T l*)], G2

using equation (31) for the state conditional probability.
However, particular embodiments may also compute statis-
tics other than the MAP. Solving equation (32) is similar to
applying a Bayesian Filter and can be numerically achieved
in two steps: a forecast and an update of 8;* which are
illustrated in steps 9 and 10 in FIG. 4. Particular embodi-
ments may solve (32) in one or multiple steps, using any
available algorithms and methods including, without limi-
tation, numerical optimization, graphical networks, look-up
tables, approximate or exact analytical expressions.
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[0048] Step 11 of the example implementation shown in
FIG. 4 uses the estimated value of the state variable Gj*, e.g.,
as obtained in (32) and all or part of the corresponding data
(d;,7;), as well as data samples or parameters available at the
time of the calculation, to compute a statistic of the load:

Si=Flr=1;,0=0,,d=d, (33

The function F in (33) may be defined by an analytical
expression or a computational procedure. As discussed
above, the implementation of FIG. 4 uses statistical infer-
ence of the carrier state in calculating the statistics that
depend on that state. For example, for turntable microwave
data, particular embodiments may use the statistical estimate
8,* of the turntable angle to rotate a segmentation mask in
order to calculate temperature statistics only for the food,
and not of the image background. In that example, S;* may
be represented as:

S;=Fle=1,,0=0,Lx,y, 1=1,0=0), T, ) =T,x, ], G4

where T(x,y) represents an image or set of images, L.(x,y,t,0)
represents a state-dependent masking operator or function,
and the masking operator or function for a given value of the
state variable 0 is given by:

Lx, y, 7, 0) = Re[Lo(x, ), 7, 0], G35

where L,(x.y) is an initial masking operator or function, and
R, is a transformation operator computable in real time. For
example, R, can be a turntable rotation operator as shown in
equation 28. The initial mask can be obtained, for example,
using a thresholding operation as described above, or as the
output of an imaging algorithm. The initial mask Lq(x,y)
may be one of the global parameters in step 1 of FIG. 4.
Depending on the application, this initial step can be com-
putationally intensive, and delay start of data collection.
However, the mask transformations (35) are computation-
ally light and will not significantly delay the subsequent
processing.

[0049] As shown in FIG. 4, steps 9-12 may periodically
repeated in order to update the estimate of the carrier state
and thereby obtain updated statistics.

[0050] As discussed above, measurements may be based
on image data of a load on a carrier, so that:

(d;, 1) = Us(x, 1), TiCx, ), D)y i =1, oo, Noamp, 36)

where [ and T may denote various attributes such as RGB
image intensity or temperature, (X,y) are coordinates within
those images, and D, are any additional measurements
collected with each sample. One or more components of (36)
depend on values of the state variable 6,, for example:



US 2025/0185126 Al

1i(x, ») = R[Io(x, »), 71, 041, GnN

where [(x,y) is the initial or a reference image, and R is an
arbitrary transformation operator. In this embodiment (37)
may depend on additional parameters so long as those
parameters are known and are independent of the state
variable. In specific applications such as microwave ovens,
the operator R can be a turntable rotation operator. In this
example, the probability distribution p(dlf,t) is defined by
the image I(x,y) so that:

U, »), T(x, ), D)0, ©) ~ fRLo(x, »), 7, 6], 1(x, ), (8)

where Iy(x,y) is the reference image, f is some positive
function, and p is a measure of a difference (or misfit)
between the two images. Thus, equation 38 reflects that the
estimation of the probability of the new image being equiva-
lent to the initial image rotated by 0 depends on the
mismatch between the new image and the rotated initial
image. One potential choice for p yields:

M1, y) - RUo(x, ), 7, 6113 B9

) >
207

pd|8, 1) = pU(x, |8, T) ~ exp{—

where 6, is an image-misfit variance and M is an image
processing operator (such as a masking operator).

[0051] In particular embodiments, the input parameter T,
associated with data sample (d,,t;) and value of the state
variable 0, may contain a temporal component that identifies
the time at which the corresponding measurement was
taken. (The actual time may be known accurately or approxi-
mately. For notational purposes, this section uses T, as
“time,” although in general the input parameter may be a
combination of temporal and non-temporal parameters.)
While the foregoing discussion assumes a scalar state vari-
able, the techniques described herein extend to vector states,
as well. In addition, in generally the techniques described
herein may apply to uniformly and non-uniformly spaced
sampling times T, but for simplicity the forgoing discussion
considers uniform spacing with T—T,_,=At=const, i>0. A
sequence (time series) may be represented as:

d i, 40
qi:AIGi—ZFijXk],z>l, “0

where{X,//}, j=1, . . ., d is a dictionary of deterministic
signals (compare with (25)), and A’ is the 1th order-finite
differencing operator defined as

. 41
Al = AoA"L Ag, = L=y “h)

At
The dictionary {X/}, j=1, . . ., d may contain signals that

are known to be present in state trajectories (e.g., harmonics,
linear trends, etc.). Parameter 1 in (40) is a global parameter
and is identified during design of the apparatus and may
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depend on the target application and physics of the under-
lying motion. However, for typical conveyor or turntable
designs, as well as robotic navigation problems, suitable
values can be 1=1, 2 (compare with series (22)).

[0052] Equation 40 may be rewritten as the following
recurring representation:

M= Gty v s M3 €ts e > €gs A, & ~ N(0; 02), (42)

where G is an arbitrary function that can be evaluated in real
time and parameterized by a latent parameter vector A.
Equation 42 may describe a wide variety of stochastic
processes including non-stationary processes and processes
with multiplicative noise when G is nonlinear, and additive
Gaussian noise stationary and non-stationary processes
when linear. Particular embodiments obtain A* and the
deterministic signal in (40) from the states 6,* (e.g., as
estimated in step 4 of the example implementation shown in
FIG. 4) by solving the following optimization problem
(nonlinear least-squares regression):

. . Nsamp -2 N (43)
Vis oo yd, AT = argrmn{[Eq,...,eNmmp[Zk:mmq’w%k Gy -

Thop3 €15 v » €kpi A) = 772)2]}

where 1, #=A'0,*, —X,_, ¥, X,/ k>l depend on v, . . . , ¥, and
the expectation is with respect to N, , samples of the
Gaussian white process €,. Equation 43 is the optimal solver
for the latent parameter vector A for a Gaussian 1. Although
the latter may not be Gaussian for a nonlinear function G in
(42), local normality may still be a permissible approxima-
tion. Alternatively, particular embodiments may use an
arbitrary misfit other than the mean squared error in the
right-hand side of (43). As an example, but without limita-
tion, (42) can be a linear function:

e = GOlk-15 - 5 T3 €15 - > G-p3; A) = (44
P q
ijlﬁjﬂk—j + ijlajfk—j +&, k=max(p,q, D+ 1, ...,
where the latent parameter vector is A=(ct;, . . ., &, By, . .

. » B,)- Depending on the magnitudes of the estimated
coefficients (that determine locations of the roots of char-
acteristic polynomials) the recurrent formula (44) may
define a stochastic non-stationary process, or a stationary
ARMA process.

[0053] Once the parameter vector and the deterministic
signal component of A’G, have been estimated by, for
example, solving equation (43), particular embodiments use
the recurrent expressions (42) or (44) and the finite differ-
ence equations (40,41) to forecast a value for the state
variable 0, from the previous (in time) estimated values 6,_,,
0, 5. ..., . For example, for both stationary autoregressive
AR(p) processes and non-stationary processes defined by
(44) when q=0, a forecast is made by direct substitution of
known values into (44) and summation of finite differences
in (40). From (44) with g=0, one obtains:
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1 OmiG-Le (45)
= i
> 771] Z Bitlis

iy =E[n; |71 .. -

For q>1, even in the stationary case of ARMA(p.q) and
MA(q), a prediction using (44) requires maintaining and
summing an auxiliary time series, because a realization of
the Gaussian white noise €, is now being inverted from
observations (the Wiener-Kolmogorov prediction formula).
However, the computational cost of such an operation is low.
For example, for an MA(1) process (i.e., p=0, q=1 in a

stationary process (44)) described in our defrosting example
in (23), the result is:

, ”,{] _ Z:/—l(_l)i—lai - (46)

iy =Eln; |7 . .

A forecast of é]:IE [ej|ej_1*, ..., 0,%] is obtained from TTJ,
N—1®s - - - » M * by summation of (40).
[0054] Variance of the forecast for any stationary of non-

stationary process (44) can be estimated as:

Var[#7, ] = Zilﬁ’?Var[n},,] +o? 47

Regarding the first sum in (47), M;_,* are derived from
estimated state variables that are not directly observed but
inferred from noisy data in (32) and hence are uncertain. As

before, Var[é;] is obtained by summation of (40). For the
prior (31) one obtains:

©-8)" (48)

logp(ﬁj = 0| 01, Varls,]

N Oj,l;rj;)t*) = const —

[0055] For a nonlinear G the Gaussian assumption is not
valid but may be permissible after a linearization. With the
new prior (48) Bayesian inference (31) becomes:

(0—#] 49

67 = argmin [—10gp(d]' [0, 7))+ 2Var[§; ]

Or, for example, using the observational model (39):

. ) [IIM[I(x, W=Ro, », 7,015 @-5)° ] 50)
6 = argmin .

.
207 Warl5;]

Var[6;*] is obtained from (49) and (50) as the inverse
Hessian (reciprocal of the second derivative when 0 is
scalar) of the objective function with respect to the state
variable evaluated at the minimum. The state variable vari-
ance in (46) is used for constructing the next forecasting
prior (47).

[0056] In the context of the example implementation
shown in FIG. 4, the immediately foregoing discussion
replaces the inference of state evolution law (30) with a
least-squares fitting (42,43) or (44,43), impacting step 7 of
FIG. 4. The discussion replaces the conditional state prob-
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ability formula (31) with (47), impacting steps 8 and 9 of
FIG. 4. The discussion replaces the general state inference
(32) with more specific optimization problems (48) or (49),
impacting steps 10 and 11 of FIG. 4.

[0057] Certain examples in this disclosure describe esti-
mating carrier motion in order to accurately update a seg-
mentation mask for a load, among other purposes. A “seg-
mentation mask™ as used in this disclosure may take the
typical form of a pixel-based discrimination between load
and background (e.g., carrier, etc.). However, this disclosure
contemplates that, in general, the references to a segmenta-
tion mask generally include any suitable discriminator
between load and background.

[0058] Particular embodiments may repeat one or more
steps of FIG. 1 or of FIG. 4, where appropriate. Although
this disclosure describes and illustrates particular steps of
FIG. 1 and of FIG. 4 as occurring in a particular order, this
disclosure contemplates any suitable steps of FIG. 1 or of
FIG. 4 occurring in any suitable order, respectively. More-
over, although this disclosure describes and illustrates par-
ticular components, devices, or systems carrying out par-
ticular steps of FIG. 1 or of FIG. 4, such as the computer
system of FIG. 5, this disclosure contemplates any suitable
combination of any suitable components, devices, or sys-
tems carrying out any suitable steps of FIG. 1 or of FIG. 4.
Moreover, this disclosure contemplates that some or all of
the computing operations described herein, including the
steps of FIG. 1 or of FIG. 4, may be performed by circuitry
of a computing device, for example the computing device of
FIG. 8, by a processor coupled to non-transitory computer
readable storage media, or any suitable combination thereof.
[0059] FIG. 5 illustrates an example computer system 500.
In particular embodiments, one or more computer systems
500 perform one or more steps of one or more methods
described or illustrated herein. In particular embodiments,
one or more computer systems 500 provide functionality
described or illustrated herein. In particular embodiments,
software running on one or more computer systems 500
performs one or more steps of one or more methods
described or illustrated herein or provides functionality
described or illustrated herein. Particular embodiments
include one or more portions of one or more computer
systems 500. Herein, reference to a computer system may
encompass a computing device, and vice versa, where
appropriate. Moreover, reference to a computer system may
encompass one or more computer systems, where appropri-
ate.

[0060] This disclosure contemplates any suitable number
of computer systems 500. This disclosure contemplates
computer system 500 taking any suitable physical form. As
example and not by way of limitation, computer system 500
may be an embedded computer system, a system-on-chip
(SOC), a single-board computer system (SBC) (such as, for
example, a computer-on-module (COM) or system-on-mod-
ule (SOM)), a desktop computer system, a laptop or note-
book computer system, an interactive kiosk, a mainframe, a
mesh of computer systems, a mobile telephone, a personal
digital assistant (PDA), a server, a tablet computer systern,
or a combination of two or more of these. Where appropri-
ate, computer system 500 may include one or more com-
puter systems 500; be unitary or distributed; span multiple
locations; span multiple machines; span multiple data cen-
ters; or reside in a cloud, which may include one or more
cloud components in one or more networks. Where appro-
priate, one or more computer systems 500 may perform
without substantial spatial or temporal limitation one or
more steps of one or more methods described or illustrated
herein. As an example and not by way of limitation, one or
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more computer systems 500 may perform in real time or in
batch mode one or more steps of one or more methods
described or illustrated herein. One or more computer sys-
tems 500 may perform at different times or at different
locations one or more steps of one or more methods
described or illustrated herein, where appropriate.

[0061] In particular embodiments, computer system 500
includes a processor 502, memory 504, storage 506, an
input/output (1/O) interface 508, a communication interface
510, and a bus 512. Although this disclosure describes and
illustrates a particular computer system having a particular
number of particular components in a particular arrange-
ment, this disclosure contemplates any suitable computer
system having any suitable number of any suitable compo-
nents in any suitable arrangement.

[0062] In particular embodiments, processor 502 includes
hardware for executing instructions, such as those making
up a computer program. As an example and not by way of
limitation, to execute instructions, processor 502 may
retrieve (or fetch) the instructions from an internal register,
an internal cache, memory 504, or storage 506; decode and
execute them; and then write one or more results to an
internal register, an internal cache, memory 504, or storage
506. In particular embodiments, processor 502 may include
one or more internal caches for data, instructions, or
addresses. This disclosure contemplates processor 502
including any suitable number of any suitable internal
caches, where appropriate. As an example and not by way of
limitation, processor 502 may include one or more instruc-
tion caches, one or more data caches, and one or more
translation lookaside buffers (TLBs). Instructions in the
instruction caches may be copies of instructions in memory
504 or storage 506, and the instruction caches may speed up
retrieval of those instructions by processor 502. Data in the
data caches may be copies of data in memory 504 or storage
506 for instructions executing at processor 502 to operate
on; the results of previous instructions executed at processor
502 for access by subsequent instructions executing at
processor 502 or for writing to memory 504 or storage 506;
or other suitable data. The data caches may speed up read or
write operations by processor 502. The TLBs may speed up
virtual-address translation for processor 502. In particular
embodiments, processor 502 may include one or more
internal registers for data, instructions, or addresses. This
disclosure contemplates processor 502 including any suit-
able number of any suitable internal registers, where appro-
priate. Where appropriate, processor 502 may include one or
more arithmetic logic units (ALUs); be a multi-core proces-
sor; or include one or more processors 502. Although this
disclosure describes and illustrates a particular processor,
this disclosure contemplates any suitable processor.

[0063] In particular embodiments, memory 504 includes
main memory for storing instructions for processor 502 to
execute or data for processor 502 to operate on. As an
example and not by way of limitation, computer system 500
may load instructions from storage 506 or another source
(such as, for example, another computer system 500) to
memory 504. Processor 502 may then load the instructions
from memory 504 to an internal register or internal cache. To
execute the instructions, processor 502 may retrieve the
instructions from the internal register or internal cache and
decode them. During or after execution of the instructions,
processor 502 may write one or more results (which may be
intermediate or final results) to the internal register or
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internal cache. Processor 502 may then write one or more of
those results to memory 504. In particular embodiments,
processor 502 executes only instructions in one or more
internal registers or internal caches or in memory 504 (as
opposed to storage 506 or elsewhere) and operates only on
data in one or more internal registers or internal caches or in
memory 504 (as opposed to storage 506 or elsewhere). One
or more memory buses (which may each include an address
bus and a data bus) may couple processor 502 to memory
504. Bus 512 may include one or more memory buses, as
described below. In particular embodiments, one or more
memory management units (MMU ) reside between proces-
sor 502 and memory 504 and facilitate accesses to memory
504 requested by processor 502. In particular embodiments,
memory 504 includes random access memory (RAM). This
RAM may be volatile memory, where appropriate Where
appropriate, this RAM may be dynamic RAM (DRAM) or
static RAM (SRAM). Moreover, where appropriate, this
RAM may be single-ported or multi-ported RAM. This
disclosure contemplates any suitable RAM. Memory 504
may include one or more memories 504, where appropriate.
Although this disclosure describes and illustrates particular
memory, this disclosure contemplates any suitable memory.

[0064] In particular embodiments, storage 506 includes
mass storage for data or instructions. As an example and not
by way of limitation, storage 506 may include a hard disk
drive (HDD), a floppy disk drive, flash memory, an optical
disc, a magneto-optical disc, magnetic tape, or a Universal
Serial Bus (USB) drive or a combination of two or more of
these. Storage 506 may include removable or non-remov-
able (or fixed) media, where appropriate. Storage 506 may
be internal or external to computer system 500, where
appropriate. In particular embodiments, storage 506 is non-
volatile, solid-state memory. In particular embodiments,
storage 506 includes read-only memory (ROM). Where
appropriate, this ROM may be mask-programmed ROM,
programmable ROM (PROM), erasable PROM (EPROM),
electrically erasable PROM (EEPROM), electrically alter-
able ROM (EAROM), or flash memory or a combination of
two or more of these. This disclosure contemplates mass
storage 506 taking any suitable physical form. Storage 506
may include one or more storage control units facilitating
communication between processor 502 and storage 506,
where appropriate. Where appropriate, storage 506 may
include one or more storages 506. Although this disclosure
describes and illustrates particular storage, this disclosure
contemplates any suitable storage.

[0065] In particular embodiments, /O interface 508
includes hardware, software, or both, providing one or more
interfaces for communication between computer system 500
and one or more /O devices. Computer system 500 may
include one or more of these 1/O devices, where appropriate.
One or more of these /O devices may enable communica-
tion between a person and computer system 500. As an
example and not by way of limitation, an /O device may
include a keyboard, keypad, microphone, monitor, mouse,
printer, scanner, speaker, still camera, stylus, tablet, touch
screen, trackball, video camera, another suitable 1/O device
or a combination of two or more of these. An I/O device may
include one or more sensors. This disclosure contemplates
any suitable /O devices and any suitable /O interfaces 508
for them. Where appropriate, /O interface 508 may include
one or more device or software drivers enabling processor
502 to drive one or more of these I/O devices. I/O interface
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508 may include one or more I/O interfaces 508, where
appropriate. Although this disclosure describes and illus-
trates a particular I/O interface, this disclosure contemplates
any suitable I/O interface.

[0066] In particular embodiments, communication inter-
face 510 includes hardware, software, or both providing one
or more interfaces for communication (such as, for example,
packet-based communication) between computer system
500 and one or more other computer systems 500 or one or
more networks. As an example and not by way of limitation,
communication interface 510 may include a network inter-
face controller (NIC) or network adapter for communicating
with an Ethernet or other wire-based network or a wireless
NIC (WNIC) or wireless adapter for communicating with a
wireless network, such as a WI-FI network. This disclosure
contemplates any suitable network and any suitable com-
munication interface 510 for it. As an example and not by
way of limitation, computer system 500 may communicate
with an ad hoc network, a personal area network (PAN), a
local area network (LAN), a wide area network (WAN), a
metropolitan area network (MAN), or one or more portions
ofthe Internet or a combination of two or more of these. One
or more portions of one or more of these networks may be
wired or wireless. As an example, computer system 500 may
communicate with a wireless PAN (WPAN) (such as, for
example, a BLUETOOTH WPAN), a WI-FI network, a
WI-MAX network, a cellular telephone network (such as,
for example, a Global System for Mobile Communications
(GSM) network), or other suitable wireless network or a
combination of two or more of these. Computer system 500
may include any suitable communication interface 510 for
any of these networks, where appropriate. Communication
interface 510 may include one or more communication
interfaces 510, where appropriate. Although this disclosure
describes and illustrates a particular communication inter-
face, this disclosure contemplates any suitable communica-
tion interface.

[0067] In particular embodiments, bus 512 includes hard-
ware, software, or both coupling components of computer
system 500 to each other. As an example and not by way of
limitation, bus 512 may include an Accelerated Graphics
Port (AGP) or other graphics bus, an Enhanced Industry
Standard Architecture (EISA) bus, a front-side bus (FSB), a
HYPERTRANSPORT (HT) interconnect, an Industry Stan-
dard Architecture (ISA) bus, an INFINIBAND interconnect,
a low-pin-count (LLPC) bus, a memory bus, a Micro Channel
Architecture (MCA) bus, a Peripheral Component Intercon-
nect (PCI) bus, a PCI-Express (PCle) bus, a serial advanced
technology attachment (SATA) bus, a Video Electronics
Standards Association local (VLB) bus, or another suitable
bus or a combination of two or more of these. Bus 512 may
include one or more buses 512, where appropriate. Although
this disclosure describes and illustrates a particular bus, this
disclosure contemplates any suitable bus or interconnect.

[0068] Herein, a computer-readable non-transitory storage
medium or media may include one or more semiconductor-
based or other integrated circuits (ICs) (such, as for
example, field-programmable gate arrays (FPGAs) or appli-
cation-specific ICs (ASICs)), hard disk drives (HDDs),
hybrid hard drives (HHDs), optical discs, optical disc drives
(ODDs), magneto-optical discs, magneto-optical drives,
floppy diskettes, floppy disk drives (FDDs), magnetic tapes,
solid-state drives (SSDs), RAM-drives, SECURE DIGITAL
cards or drives, any other suitable computer-readable non-
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transitory storage media, or any suitable combination of two
or more of these, where appropriate. A computer-readable
non-transitory storage medium may be volatile, non-vola-
tile, or a combination of volatile and non-volatile, where
appropriate.

[0069] Herein, “or” is inclusive and not exclusive, unless
expressly indicated otherwise or indicated otherwise by
context. Therefore, herein, “A or B” means “A, B, or both,”
unless expressly indicated otherwise or indicated otherwise
by context. Moreover, “and” is both joint and several, unless
expressly indicated otherwise or indicated otherwise by
context. Therefore, herein, “A and B” means “A and B,
jointly or severally,” unless expressly indicated otherwise or
indicated otherwise by context.

[0070] The scope of this disclosure encompasses all
changes, substitutions, variations, alterations, and modifica-
tions to the example embodiments described or illustrated
herein that a person having ordinary skill in the art would
comprehend. The scope of this disclosure is not limited to
the example embodiments described or illustrated herein.
Moreover, although this disclosure describes and illustrates
respective embodiments herein as including particular com-
ponents, elements, feature, functions, operations, or steps,
any of these embodiments may include any combination or
permutation of any of the components, elements, features,
functions, operations, or steps described or illustrated any-
where herein that a person having ordinary skill in the art
would comprehend.

What is claimed is:

1. A method comprising:

accessing an initial image of a load on a moving load
carrier, the initial image of the load having been cap-
tured at an initial time;

accessing a subsequent image of the load on the moving
load carrier, the subsequent image having been cap-
tured at a subsequent time;

generating a transformed set of images comprising a first
initial image and a first subsequent image, wherein
creating the transformed set of images comprises trans-
forming at least one of: (1) the initial image to the first
initial image or (2) the subsequent image to the first
subsequent image according to a motion profile of the
load carrier from the initial time to the subsequent time;
and

estimating a motion of the load carrier from the initial
time to the subsequent time based on minimizing a
difference between the first subsequent image of the
load and the first initial image of the load.

2. The method of claim 1, wherein estimating the motion
of a load carrier comprises estimating one or more of (1) a
rotation of the load carrier or (2) a motion of at least a
portion of the load carrier along one or more predetermined
trajectories.

3. The method of claim 1, wherein estimating the rotation
of a load carrier comprises estimating one or more of (1) a
periodic motion of at least a portion of the load carrier or (2)
a translation of at least a portion of the load carrier.

4. The method of claim 1, further comprising estimating
the motion of the load carrier by minimizing an objective
function that is based on (1) the difference between the first
subsequent image of the load and the first initial image of the
load and (2) a likelihood distribution of the motion of the
load carrier at the subsequent time.
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5. The method of claim 4, further comprising estimating
the motion of the load carrier by minimizing an objective
function that includes an image noise model.

6. The method of claim 4, wherein the likelihood distri-
bution of the motion of the load carrier at the subsequent
time is based on an estimated rate of motion of the load
carrier.

7. The method of claim 6, wherein the estimated motion
rate of the load carrier is based on a plurality of images of
the load on the moving load carrier, each of the plurality of
images have been captured at a corresponding time between
the initial time and the subsequent time.

8. The method of claim 7, wherein the estimated motion
rate of the load carrier and the likelihood distribution of the
motion of the load carrier at the subsequent time are each
based on an estimated variance of an acceleration of the load
carrier.

9. The method of claim 4, wherein the likelihood distri-
bution of the motion of the load carrier at the subsequent
time is based on modeling rotational dynamics of the load
carrier as a stochastic process.

10. The method of claim 9, further comprising determin-
ing, based on the modeled stochastic process, a temporal
deviation of the rotation rate, the deviation comprising a
seasonal signal, a trend signal, and a residual signal.

11. The method of claim 4, wherein them motion of the
load carrier comprises a rotation of the load carrier, and the
likelihood distribution comprises an initial likelihood distri-
bution, the method further comprising:

accessing a plurality of additional images, each captured

at a time after the subsequent time;

determining whether the initial image, the subsequent

image, and the plurality of additional images comprise
sufficient data to define a state evolution of the load
carrier; and

in response to a determination that there is sufficient data

to define a state evolution of the load carrier, then:

determining, based on the defined state evolution, an
updated likelihood distribution of the rotation of the
load carrier;

accessing a plurality of images of the load carrier
captured during a period of time; and

determining, based on the updated likelihood distribu-
tion and the plurality of images of the load carrier, a
rotation of the load carrier during the period of time.

12. The method of claim 1, wherein the initial image and
the subsequent image are captured by an imaging apparatus
comprising one or more of:

one or more RBG cameras; or

one or more thermal cameras

13. The method of claim 1, further comprising:

accessing an initial segmentation mask of the load; and

determining, based on the initial segmentation mask and
the estimated motion of the load carrier, an updated
segmentation mask for the load.

14. The method of claim 13, wherein the load comprises
a food item in a microwave and the motion of the load carrier
comprises a rotation of the load carrier.

15. The method of claim 13, further comprising calculat-
ing, based upon the updated segmentation mask for the load,
one or more statistics of the load.

16. The method of claim 15, wherein the one or more
statistics of the load comprise one or more of: a temperature
distribution within the load, a mean temperature of the load,

Jun. 5, 2025

a median temperature of the load, or a statistic of the load
that is based on a determined temperature of the load.

17. The method of claim 1, wherein the load comprises a
food item in a microwave.

18. A system comprising:

one or more non-transitory computer readable storage

media storing instructions; and one or more processors
coupled to the non-transitory computer readable stor-
age media, the one or more processors operable to
execute the instructions to:

access an initial image of a load on a moving load carrier,

the initial image of the load having been captured at an
initial time;
access a subsequent image of the load on the moving load
carrier, the subsequent image having been captured at
a subsequent time;

generate a transformed image set comprising a first initial
image and a first subsequent image, wherein creating
the transformed image set comprises transforming at
least one of: (1) the initial image to the first initial
image or (2) the subsequent image to the first subse-
quent image according to a motion profile of the load
carrier from the initial time to the subsequent time; and

estimate a motion of the load carrier from the initial time
to the subsequent time based on minimizing a differ-
ence between the subsequent image of the load and the
initial image of the load.

19. The system of claim 18, wherein the one or more
processors are further operable to estimate the motion of the
load carrier by minimizing an objective function that is
based on (1) the difference between the first subsequent
image of the load and the first initial image of the load and
(2) a likelihood distribution of the motion of the load carrier
at the subsequent time.

20. The system of claim 19, wherein the likelihood
distribution of the motion of the load carrier at the subse-
quent time is based on modeling rotational dynamics of the
load carrier as a stochastic process.

21. The system of claim 19, wherein the motion of the
load carrier comprises a rotation of the load carrier, and the
likelihood distribution comprises an initial likelihood distri-
bution, further comprising one or more processors operable
to execute the instructions to:

access a plurality of additional images, each captured at a

time after the subsequent time;

determine whether the initial image, the subsequent

image, and the plurality of additional images comprise
sufficient data to define a state evolution of the load
carrier; and

in response to a determination that there is sufficient data

to define a state evolution of the load carrier, then:

determine, based on the defined state evolution, an
updated likelihood distribution of the rotation of the
load carrier;

access a plurality of images of the load carrier captured
during a period of time; and

determine, based on the updated likelihood distribution
and the plurality of images of the load carrier, a
rotation of the load carrier during the period of time.

22. One or more non-transitory computer readable storage
media storing instructions and coupled to one or more
processors that are operable to execute the instructions to:
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access an initial image of a load on a moving load carrier,
the initial image of the load having been captured at an
initial time;
access a subsequent image of the load on the moving load
carrier, the subsequent image having been captured at
a subsequent time;

generate a transformed image set comprising a first initial
image and a first subsequent image, wherein creating
the transformed image set comprises transforming at
least one of: (1) the initial image to the first initial
image or (2) the subsequent image to the first subse-
quent image according to a motion profile of the load
carrier from the initial time to the subsequent time; and

estimate a motion of the load carrier from the initial time
to the subsequent time based on minimizing a differ-
ence between the subsequent image of the load and the
initial image of the load.

23. The media of claim 22, wherein the one or more
processors are further operable to execute the instructions to
estimate the motion of the load carrier by minimizing an
objective function that is based on (1) the difference between
the first subsequent image of the load and the first initial
image of the load and (2) a likelihood distribution of the
motion of the load carrier at the subsequent time.

24. The media of claim 23, wherein the likelihood distri-
bution of the motion of the load carrier at the subsequent
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time is based on modeling rotational dynamics of the load
carrier as a stochastic process.

25. The media of claim 23, wherein the motion of the load
carrier comprises a rotation of the load carrier, and the
likelihood distribution comprises an initial likelihood distri-
bution, the one or more non-transitory computer readable
storage media storing further instructions and coupled to one
or more processors that are operable to execute the instruc-
tions to:

access a plurality of additional images, each captured at a

time after the subsequent time;

determine whether the initial image, the subsequent

image, and the plurality of additional images comprise
sufficient data to define a state evolution of the load
carrier; and

in response to a determination that there is sufficient data

to define a state evolution of the load carrier, then:

determine, based on the defined state evolution, an
updated likelihood distribution of the rotation of the
load carrier;

access a plurality of images of the load carrier captured
during a period of time; and

determine, based on the updated likelihood distribution
and the plurality of images of the load carrier, a
rotation of the load carrier during the period of time.
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